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Balancing human development with conservation necessitates ecological policies that optimize outcomes within
limited budgets, highlighting the importance of cost-efficiency and local impact analysis. This study employs the
Socio-Econ-Ecosystem Multipurpose Simulator (SEEMS), an Agent-Based Model (ABM) designed for simulating
small-scale Coupled Human and Nature Systems (CHANS), to evaluate the cost-efficiency of two major ecology
conservation programs: Grain-to-Green (G2G) and Firewood-to-Electricity (F2E). Focusing on China’s Wolong
National Reserve, a worldwide hot spot for flagship species conservation, the study evaluates the direct benefits
of these programs, including reverted farmland area and firewood consumption, along with their combined
indirect benefits on habitat quality, carbon emissions, and gross economic benefits. The findings are as follows:
(1) The G2G program achieves optimal financial efficiency at approximately 500 CNY/Mu (~1177.5 USD/ha),
with diminishing returns observed beyond 1000 CNY/Mu (~2355 USD/ha); (2) For the F2E program, the most
fiscally cost-efficient option arises when the subsidized electricity price is at 0.4-0.5 CNY/kWh (~0.063-0.079
USD/kWh), while further reductions of the prices to below 0.1 CNY/kWh (~0.0157 USD/kWh) result in a
diminishing cost-benefit ratio; (3) Comprehensive cost-efficiency analysis reveals no significant link between
financial burden and carbon emissions, but a positive correlation with habitat quality and an inverted U-shaped
relationship with total economic income; (4) Pareto analysis identifies 18 optimal dual-policy combinations for
balancing carbon footprint, habitat quality, and gross economic benefits; (5) Posterior Pareto optimization
further refines the selection of a specific policy scheme for a given realistic scenario. The analytical framework of
this paper helps policymakers design economically viable and environmentally sustainable policies, addressing
global conservation challenges.

1. Introduction

Preserving ecological diversity and promoting economic growth are
both major aims among the United Nation’s Sustainable Development
Goals (SDGs) (United Nation, 2015), while only too often the two wit-
ness conflicts. In ecologically sensitive areas, the imperative to preserve
biodiversity often clashes with the need for local development (Kang
et al., 2021). The situation is especially critical in developing countries,
where the pervasive natural resource extraction-dependent economic
model creates a contest for scarce resources like land, energy, and
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biomass, intensifying the tension between economic development and
ecological conservation (Ghoddousi et al., 2022; Zeng et al., 2023). A
variety of policies for harmonizing species protection and human
development has been proposed in the existing literature, such as the
Ecological Compensation Program, a financial transfer mechanism that
mitigates the negative influences of developing activities on the natural
environment (Cuperus et al., 1996; Jenik, 2002; Wunder, 2005).
Nevertheless, two crucial challenges emerge in designing such pol-
icies, namely the precision design of the program, as well as their cost-
efficiency. On the one hand, as socio-ecological systems are
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characterized by complex interconnections and feedback loops, where
single-focus policies may produce unforeseeable consequences,
designing effective conservation policies requires precision in imple-
mentation to achieve ecological objectives without unintended side ef-
fects (Andres et al., 2012; Van der Ploeg and Withagen, 2015). On the
other hand, ecological preservation policies are often funded through
financial transfers, but in developing countries, the demand for con-
servation funding usually far exceeds available resources (Balmford
et al., 2003). As protecting all habitats at the highest compensation
levels is not financially viable, this necessitates trade-offs between sce-
narios with potentially conflicting objectives to achieve the best out-
comes at the lowest possible cost.

China’s Wolong National Reserve presents a vivid example of the
above-stated challenges. As the largest and most critical habitat for the
giant panda in China, Wolong is globally significant for its high biodi-
versity and diverse landscapes, which also support other important
species like the snow leopard and golden monkey. Wolong has hence
been identified as one of the 25 biodiversity hotspots for conservation
priorities (Myers et al., 2000), included in Global 200 Ecoregions (Olson
and Dinerstein, 2003) by Conservation International (CI) and World
Wildlife Fund (WWF) respectively, and also listed as a World Heritage by
the UNESCO World Heritage Centre in 2006. However, aside from its
global conservation significance, Wolong has been inhabited by humans
for over 500 years, with approximately 5000 residents currently residing
there. Human activities, such as agriculture and firewood collection
have been pillars supporting the local self-sufficient economy (Liu et al.,
1999; Ouyang et al., 2001), while the increasing magnitude of such
activities with the population growth in the past few decades, along with
an emerging tourism sector which also indirectly depends on natural
resource extraction have increasingly threatened the fragile balance
between human livelihoods and natural ecosystems. The issue of
reconciling human development with species conservation faced by
Wolong is so pronounced that it is listed as one of the seven most dis-
cussed regions in global Land Use and Land Cover Change (LUCC)
studies (Rindfuss et al., 2007), as well as one of the six most critical sites
for human-nature system coupling research globally (Liu et al., 2007).
Unfortunately, despite the extensive research on giant panda conser-
vation (Kang, 2022), the socioeconomic development of Wolong’s
human residents has been relatively insufficient (An et al., 2001, 2006;
Xu et al., 2006), revealing a significant gap in designing ecological
preservation policies in such regions.

In this paper, with Wolong as an exemplar case, we address the two
challenges through designing and implementing a complex-system
simulation-based, multi-objective decision-making system, which is an
expansion of the Socio-Econ-Ecosystem Multipurpose Simulator
(SEEMS) (Chen et al., 2023). By design, the system effectively responds
to the above-stated two challenges.

First, the design of SEEMS follows a complex-system paradigm, such
as to reflect the Complex Adaptive Systems (CAS) (Lansing, 2003;
Schneider and Somers, 2006) nature of the socio-ecological system in
Wolong. Particularly, Wolong is regarded as a typical Coupled Human
and Natural System (CHANS), where human activities and ecological
processes are interlinked through complex feedback loops, which evolve
over time and are subject to the influence of various internal and
external shocks, and macro-level socio-ecological patterns emerge from
the aggregation of micro-scale actions (Alberti et al., 2011; Liu et al.,
2007; Sheppard and McMaster, 2008). All these complications render
precise prediction of the outcome of any conservation policy difficult.
For example, the farmland-reverting program may facilitate a boom in
grain-consuming wildlife such as boars, which intensifies the
human-wildlife tension and discourages local residents from signing in
the program; or, for another example, subsidizing electricity use, which
is intended to suppress firewood-collecting inflicted human intervention
on wildlife habitats, may prove a disserve as more tourists are attracted
to the habitats by the improved accommodation thanks to the conve-
nience brought about by electricity-powered apparatus. Fortunately,
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compared to the more conventional top-down approach (An and
Lopez-Carr, 2012; Field et al., 2006), the intrinsic bottom-up design of
SEEMS, like other Agent-based Models (ABM) (Parker et al., 2003),
helps simulate the phenomenon of “emergence”, i.e., complex outcomes
out of relatively simple rules of interactions between the human/societal
agents, wildlife, and the natural environment (Lansing, 2003; Schneider
and Somers, 2006), and is therefore especially suitable for our research
purpose. Furthermore, SEEMS is tailored to a small CHANS with an open
economy, easy to expand with additional policy-related modules, and is
also easy to implement for its minimal data requirements. Therefore,
through including conservation policies as "global controllers", SEEMS
allows for a systematic evaluation of their benefits, drawbacks, and
trade-offs, such as responding to the precision policy design challenge,
and enabling us to answer key research questions including what are the
actual ecological, economic, and social impacts of the policies, and how
can one choose the most effective policy intervention strategies to
optimize socio-ecological system welfare.

Second, we integrate SEEMS within a multi-objective optimization
framework, to fulfill the needs for decision-making with various direct
and implicit goals, constraints, and preferences. On the one hand,
ecological protection policies entail both direct benefits and complex
indirect impacts. For example, the farmland-reverting program directly
increases reverted farmland area, and potentially releases agricultural
labor. When combined with initiatives to subsidize electricity use,
enhancing the appeal of tourism as an employment sector, these two
programs collectively reshape the local employment landscape. More-
over, subsidized electricity initiatives not only reduce habitat distur-
bances for giant pandas by limiting firewood collection, but also affect
carbon emissions via changes in community energy consumption pat-
terns. Clearly, a single-benefit evaluation method falls short in
addressing these trade-offs, necessitating multi-objective optimization
methods for better decision support. Pareto optimization is valuable for
balancing objectives, especially conflicting ones. A solution within the
Pareto optimal set is such that there is no other solution that can
improve at least one objective without worsening any of the others (Deb,
2001). This also indicates that no single solution can achieve optimality
across all objectives at once. On the other hand, to make the final de-
cision, real-world constraints, particularly budget limitations, and
decision-maker preferences must be incorporated into the
decision-making process (Rachmawati and Srinivasan, 2006; Williams
and Kendall, 2017). Indeed, a key challenge in policy design under
limited financial resources is achieving ecological protection goals at the
lowest cost. Cost-efficiency analysis is essential for identifying optimal
resource allocation strategies, ensuring that limited financial resources
are used to maximize policy effectiveness (Athanassopoulos and Tri-
antis, 1998). The budget constraint line serves as a practical tool in this
context. By mapping out this line, decision-makers can clearly visualize
the various combinations of resource allocations that are feasible within
budgetary limits (Meyer and Shipley, 1970). Indifference curves,
meanwhile, are vital for understanding decision-maker preferences,
which show combinations of two attributes with the same utility
(Knetsch, 1989; Samuelson, 1956). They can not only display the
trade-off and substitution relationship between the two attributes, but
also reveal benefit distribution via multiple curves, helping
decision-makers quickly identify favorable attribute combination re-
gions. Therefore, the study combines Pareto analysis, budget constraint
lines, and indifference curves to assess the overall benefits of different
ecological protection policies. This integrated approach provides
decision-makers with an optimal solution that screens out the range of
policy combinations that best meet the preferences of the
decision-maker within the budget.

The rest of this paper is organized as follows: Section 2 provides a
background of the Wolong National Reserve, details its specific chal-
lenges, and introduces candidate ecological protection plans to evaluate.
Section 3 outlines the modeling strategy, including model verification
and validation, performance metrics, and data sources. Section 4
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Fig. 1. The map of Wolong National Reserve.'! Spatial overlap between firewood collection zones and panda habitats highlights habitat degradation risks requiring

policy coordination.

presents the simulation results, and performs multi-objective evaluation
of viable policy choices under different scenarios. Finally, Section 5
offers conclusions and suggests directions for future research.

2. Research area and backgrounds

2.1. Ecological challenges and policy interventions in Wolong National
Reserve

Wolong is located in a remote, mountainous area. Before the estab-
lishment of the nature reserve, the residents lived largely in autarky.
With the rapid growth of China’s development, the local economy has

also changed. Particularly since 2000, the introduction of cash crops and
eco-tourism has significantly increased residents’ income, and the local
economy has gradually evolved into a small and open economic system
mainly based on expanding agriculture and service industries.

The natural resource-dependent economic development model in
Wolong has created a competition between economic development and
the protection of the habitats of giant pandas and other species. The
main scarce resources at stake are energy and land. Specifically, two
kinds of human activities threaten the habitat: agricultural activities and
firewood collection (Liu et al., 1999; Ouyang et al., 2001), both tradi-
tional components of the self-sufficient economy. Owing to the high
altitude and cold climate, energy issues plague the residents in the long
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Table 1

Details of the G2G and F2E programs. Key differences in economic, labor, and
ecological impacts between participants and non-participants of the G2G and
F2E programs.

G2G F2E
Participant Non- Participant Non-
participant participant

Household Agriculture No Additional No
direct income loss payment for
economic loss electricity

Household Policy No Subsidized No
Revenues compensation electricity

price

Impact on the + - + -
workforce

Impact on other  No No Possibility to No
economic work in a high-
opportunities income

industry

Impact on + - + -
ecology

Impact on - + - +
carbon
footprint

Table 2
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environmentally friendly production and lifestyle while compensating
for potential economic losses from adopting ecological practices. Spe-
cifically, they encompass two key programs: the Grain-to-Green (G2G)
program, and the Firewood-to-Electricity (F2E) program. The G2G
program encourages converting farmland back to forest or bamboo
groves and provides annual compensation to offset the income loss of
giving agriculture up (Deng et al., 2014; Uchida et al., 2005). The F2E
program involves constructing small hydropower stations to generate
electricity and encouraging the use of electricity over firewood by
electricity price subsidies. This plan is expected to aid in habitat pro-
tection by discouraging illegal firewood collection (Wu et al., 2019). In
addition, both programs help to unleash the labor force in rural
households and offer potential new economic opportunities. For the F2E
program, the energy upgrade can provide better living conditions, thus
enabling farmers to enter the more lucrative homestay lodging business.
In principle, both programs are voluntary, allowing households to
independently decide whether to participate (Table 1).

While the implementation of these policies has initiated some
changes, the anticipated goals have not been fully achieved due to
inherent flaws in program design and budget constraints. The G2G
program, for instance, has experienced a decline in public participation,
resulting in overall performance that falls short of initial expectations.

Policies Scenario matrix. 273 scenarios testing G2G (0-2000 CNY/Mu) & F2E (0.05-0.65 CNY/kWh) combinations for simulation and policy assessment.

G2G_Compensation level (0-2000 CNY/Mu)*

0 100 200 . 1000 2000
F2E_Subsidized electricity price 0.65 GGO/ GG100/ GG200/ GG100/ GG2000/
(CNY/kWh) FE0.65 FE0.65 FE0.65 FE0.65 FE0.65
0.60 GGO/ GG100/ GG200/ GG100/ GG2000/
FE0.60 FE0.60 FE0.60 FE0.60 FE0.60
0.55 GGO/ GG100/ GG200/ GG100/ GG2000/
FE0.55 FE0.55 FE0.55 FE0.55 FE0.55
0.40 GGO/ GG100/ GG200/ GG100/ GG2000/
FE0.40 FE0.40 FE0.40 FE0.40 FE0.40
0.10 GGO/ GG100/ GG200/ GG100/ GG2000/
FE0.10 FE0.10 FE0.10 FE0.10 FE0.10
0.05 GGO/ GG100/ GG200/ GG350/ GG2000/
FE0.05 FE0.05 FE0.05 FE0.01 FE0.05

*1 CNY (Yuan) = 0.157 Dollars.
* 1Mu ~ 0.067 Hectares.

term. Firewood is the traditional energy source, and its collection
significantly harms the giant panda habitat. Additionally, due to popu-
lation pressure, local farmers have historically converted forests and
bamboo groves into farmland, severely damaging the habitat (Fig. 1).
Although deforestation for agricultural expansion was forbidden in the
early 2000s, existing farmland already fragments the main habitats,
letting alone potential enforcement issues. Furthermore, recent eco-
nomic growth has expanded the scale of these activities. The first reason
is that cash crop introduction has made agriculture profitable, which
further stimulates the motivation for cultivation. Additionally, the rise
of tourism has increased energy demand and has stimulated the demand
for agricultural and specialty products, leading to further agricultural
expansion. In summary, the increased range and intensity of human
activities inevitably encroach upon wildlife habitats. Areas of intense
human activity coincide with the primary habitat of the giant panda,
posing a great threat to the habitat quality.

To enhance habitat conservation, the local government has imple-
mented ecological conservation plans for energy and land use since the
early 2000s. These plans encourage more sustainable and

! Data source: Sichuan Wolong National Natural Reserve Administration; The
Third National Giant Panda Population Survey. Map lines delineate study areas
and do not necessarily depict accepted national boundaries

Conversely, the F2E program promotes increased electricity consump-
tion, but it cannot entirely replace firewood, and occasional firewood
collection continues, undermining the protective effect. Additionally,
the hydropower station construction for electricity production may
introduce negative environmental externalities that further complicate
conservation efforts. Therefore, revising and improving these programs
is urgently needed to achieve optimal conservation outcomes. Moreover,
both programs provide incentives for the local households to turn to the
so-called “eco-tourism”, which, though, turned out not “ecological”
enough. Energy modernization per se leads to increased resource con-
sumption and waste production (Greening et al., 2000; Herring, 2006).
Also, enhanced mobility through electric vehicles can extend the spatial
footprint of human disturbance, and almost inevitably attract tourists
deeper into wildlife habitats, affecting wildlife habitats over a larger
area and for longer durations.

The conservation policies within the Wolong National Reserve have
garnered significant academic attention. Early studies investigated the
impact of farming and firewood collection on giant panda habitats and
regional landscapes (Bearer et al., 2008), identified spatial patterns of
firewood collection (He et al., 2009; Linderman et al., 2005), and
employed ABM to examine dynamic changes in population character-
istics and their relationship with panda habitat (An et al., 2001, 2005,
2006). These studies have laid a solid foundation for our research but



K. Liu et al.

Create A New Scenario

Ecological Modelling 504 (2025) 111079

[ 1
= v
Dat The Government: Issuing Policies ‘
ata
Base
o The Human System The Nature System
o .
= L Individual | Land Use / Land Cover Change (LUCC) |
g v v v T
-] Birth / Death Growth / Education Marriage / Divorce + 2
87 £ } ‘ Land Use ‘ ‘ Land Cover ‘ o»
€ "y Individual Demographics Update I e m
& 3 ' ' T T8
@ Other Ty . 0 (2
a Farmland | er Iype | Time to succession—__ 3 <
lﬁ Household X “_interval reached? — g4
L Categorization 626G~ no ~_ [
oop Income-Leisure & Risk Attitude __'\EQ'?HW YEs | No ®3
: JYES
o Ener Business i
ES gy Productive R G2G Programs ‘ Change to ‘ Retain Succession Retain ‘
£ Eneray Demand roductive Resources L Compensation Level || | Other Type Original Type
Se 9y Labor (L)  Land (T) Capital (K) (0, 100, 200,...,1900, 2000)
S — CNY/Mu
9 2 Electricity Utility Fancti
o Demand ility Function Non- - Habitat Quality
.g £ ' Determination pamzi':,am Participant > Ay
-}
®3 FiréWood Electﬁricity | 8=
0? e c o ! Business Choice — Disturbance ‘ Topographical Biotic ‘ o 8
= ; ! ; ‘ ‘ : 52
Collection €O,  Electricity . F2E Programs i oD
Area  Emission  Cost Business Income g Activity ‘ Roads Resident% Slope| Pistance ﬁ é‘"’”d Bamb."ﬂ ERES
1 i idized Electricity Price Streams over | |Species| <
. ol (0, 0.05, 0.10,...,, 0.60, 0.65)
Financial income ENYIINE
e

Base Model TEXT New Performance Indicators

1 Update all Entities, State Variables ‘

Expansion Modules

Fig. 2. Overall framework of the expanded SEEMS model. Integrates dynamic feedback between household energy structure, business decisions, land-use conversion,
and ecological responses. The expansion of the base model and outputs enables SEEMS multi-policy analytical capability.

also have some limitations. Primarily, these studies are nearly two de-
cades old, and the socio-ecological system in Wolong, particularly its
economic structure, has undergone significant transformation since
then. Economic shifts and the surge in tourism have greatly increased
the complexity of the Wolong socio-economic-ecological system,
rendering previous economic models less applicable. Moreover,
although there are no budget constraints for any program for the
moment, they will eventually face a budget cap. Therefore, local au-
thorities must judiciously allocate transferred funds to achieve optimal
long-term outcomes.

The challenges of low public participation, and the intricate inter-
play between the two programs, along with the associated ecological
and economic issues, underscore the importance of precise policy
design, multi-dimensional evaluation, and long-term simulation. These
elements are essential for optimizing resource allocation and achieving
effective conservation outcomes.

2.2. Policy options and scenarios design

Apparently, price, namely the compensation or subsidy standards,
plays a central role in this decision-making problem. We use a policy
scenario analysis to explore optimal policy selection for the Wolong
National Reserve. Each plan can implement different compensation or
subsidy standards, allowing for a range of condition combinations
(Table 2). The primary goal is to maximize conservation effectiveness
within budget constraints, measured by habitat integrity and green-
house gas emissions while minimizing negative impacts on the liveli-
hoods of residents.

In the current scenario, there are no budgetary constraints, with the
government temporarily covering all implementation costs. Economic
development is a lower priority for the Wolong National Reserve, so our
assessment focuses on comparing ecological protection performance,
economic opportunities for residents, and government expenditure on
compensation and subsidies. This approach aims to identify general
relationships and determine the optimal policy combination for various
objectives, such as maximizing conservation outcomes, achieving cost-
effectiveness, and enhancing economic impacts.

For the scenario simulations, we set specific subsidy amounts based
on real-world conditions. The simulated compensation range for the
Grain-to-Green (G2G) program is from 0 to 2000 CNY/Mu (~4710 USD/

ha), with simulations conducted in increments of 100 CNY/Mu (~233.5
USD/ha). For the Firewood-to-Electricity (F2E) program, we use the
standard electricity price of 0.65 CNY/kWh (~0.102 USD/kWh) as the
upper limit, with simulations conducted in increments of 0.05 CNY/kWh
(~0.079 USD/kWh). All these ranges reflect the actual compensation
and subsidy levels provided by the government currently.

3. Materials and methods

The SEEMS model framework developed in this study (Fig. 2) pro-
vides a systematic representation of system components and their
interconnected feedback mechanisms. To assess the synergistic in-
teractions between G2G and F2E policies within the CHANS of Wolong
Nature Reserve, this study enhances the baseline framework originally
designed for single-policy (G2G) evaluation. Key modifications include
the integration of an F2E policy-driving module and the incorporation of
composite evaluation metrics, enabling the model to simulate dual-
policy scenarios. The following sections detail the base model, the
expansion, as well as the output evaluation indicators and methods.

3.1. SEEMS: the base model

We use the Socio-Econ-Ecosystem Multipurpose Simulator (SEEMS)
as the main evaluation tool, with necessary expansions to adapt to this
research’s aims. SEEMS is an agent-based model designed to simulate
the operation of a small-scale, agriculture-centric, open socio-econ-
ecological system and generate scenarios for assessing alternative fu-
tures. It can simulate the decision-making process of individual and
household agents in economic activities, along with the associated so-
cial, economic, and ecological impacts. By monitoring the performance
indicators of land use, and economic and ecological aspects, researchers
can evaluate policy effectiveness by visualizing diverse outcomes.
Hence, by design, SEEMS is a suitable tool for studying Wolong’s
ecological preservation policy-making. A comprehensive description of
its baseline configuration is available in prior work (Chen et al., 2023),
with this section offering an overview of its principal design concepts.

SEEMS operates across four levels: individuals, households, society,
and the environment. Individuals are the fundamental agents, with be-
haviors encompassing birth, growth, education, marriage, childbirth
and migration. Households are the basic actors, and they evolve with the
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Fig. 3. The overall structure of SEEMS. System dynamics integrating human activities, ecological processes, and policy modules to simulate conservation-

development trade-offs through socio-ecological feedback.

dynamic changes of their members and participate in most socio-
economic-ecological processes. Society serves as a container for house-
holds and their relationships, as well as the stage for all socio-economic
activities and policies. The environment, in turn, forms the spatial and
ecological context, interacting with socio-economic elements across
various dimensions.

SEEMS comprises two main subsystems: the human system and the
nature system, which interact through a series of feedback mechanisms.
The Human System contains the Socioeconomic Sub-Model, focusing on
household-level decisions and behaviors, such as business choices and
financial income, to simulate household responses to policies based on
their preferences and resources. It also includes other sub-models related
to demographic dynamics, social interactions, and accounting processes,
covering population changes and economic indicators like household
income and expenditures. The Nature System features the Ecosystem
Sub-Model, simulating natural processes such as vegetation succession
and biogeochemical cycles, to model environmental changes over time
and their impacts on humans. Additionally, the Nature System can be
extended with sub-models for habitat quality evaluation to enhance its
functionality. Furthermore, policies are viewed as global variables that
influence the system in multiple ways. In certain scenarios, a house-
hold’s acceptance of a policy may lead to adjustments in their produc-
tive resources. For instance, accepting an energy upgrade frees a
significant portion of a household’s labor force from firewood collection.
In other cases, policy interventions modify decision-making parameters,
such as recalculating business costs for households with subsidized
electricity. These policy applications act as constraints or stimuli within
SEEMS, generating distinct scenario outcomes (Fig. 3).

Compared to other ABMs (Singh, Squire, and Strauss, 1986), the
human system in SEEMS is uniquely tailored with a microeconomic

foundation for small-scale and open rural economies. The fundamental
concept of SEEMS emphasizes the behaviors of heterogeneous agents
making decisions to maximize effectiveness, guided by their inherent
preferences. The introduction of heterogeneous agents is crucial for
accurately reflecting real-world situations in ABMs (Aydilek and Aydi-
lek, 2020; Gallen, 2021). The model specifically considers two types of
preferences: the income-leisure trade-off and risk attitude, which are
recognized as critical determinants of production behaviors in rural
economic studies (Becker, 1988; Huang, 1990). Once preferences are
ensured, the household agents can take action for productive decisions.
Household agents possess a set of productive resources: labor (L), land
(T), and capital (K), choosing from a range of available businesses to
maximize effectiveness. Considering the model’s design, simplification,
and the focus of this study on evaluating ecological conservation policies
in Wolong National Reserve, we primarily defined three business types
directly related to the policies: agriculture, lodging, and temporary jobs.
Households with different preferences have different optimization goals.
Profit-maximizing households determine their production possibility
frontier (PPF) with given L, T, and K, aiming to maximize profits within
that frontier. In contrast, a leisure-maximizing household aims to
minimize labor investment (L) while maintaining a baseline profit.
These optimization problems can be solved through a rule-based itera-
tive approach.

The nature system in SEEMS models the local ecosystem’s func-
tioning. Because of the inherent unpredictability of wildlife behaviors,
ecological conservation objectives are assessed indirectly through sim-
ulations of habitat conditions. The main function of this system is to
simulate landscape evolution in the study area, following the vegetation
succession rules in the ecosystem (Clements, 1916; Curtis and McIntosh,
1951; Yunus et al., 2020).
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Table 3

Household total energy demand model. The model estimates the relationship
between household characteristics (type, area of room, and number of rooms)
and total energy demand (TEND). All independent variables are significant at
the p < 0.1 level, and the model demonstrates a goodness-of-fit (R?) of 0.46.

Model Unstandardized Standardized t Sig.
coefficients coefficients
B Std g
1  Constant 6.069  0.140 43.451  0.000
Household 0.205 0.049 0.337 4.215 0.000
type
Area of room 0.050  0.029 0.138 1.723 0.087
Number of 0.009 0.005 0.134 1.660 0.099

rooms

* Dependent variable: Lg TEND.

Table 4

Household total electricity demand model. The model estimates the relationship
between household characteristics (area of room, business type, and household
type) and total electricity demand (TELD). All independent variables are sig-
nificant at the p < 0.1 level, and the model demonstrates a goodness-of-fit (R?) of
0.50.

Model Unstandardized Standardized t Sig.
coefficients coefficients
B Std i
1  Constant 5.684  0.146 39.035  0.000
Area of room 0.072 0.028 0.164 2.608 0.010
Business type 0.447  0.120 0.243 3.716 0.000
Household 0.216  0.051 0.285 4.269 0.000
type

* Dependent variable: Lg TELD.

SEEMS integrates the socio-economic-ecological system by modeling
interactions between the human and nature subsystems, resulting in
macro-emergent outcomes. These interactions include the impact of
human activities on natural habitats (e.g., farming, housing, and infra-
structure construction) and the influence of wildlife activities on human
production and life. These interactions are bidirectional and iterative,
capturing non-linear outcomes from a series of repetitive interactions,
thereby fully reflecting the complex nature of CHANS.

3.2. Expansion of SEEMS

In this research, we have tailor-extended the baseline model to better
accommodate the unique conditions of the Wolong National Reserve
and evaluate specific policies. This section elaborates on these
extensions.

3.2.1. Energy demand

One advantage of SEEMS is its ability to seamlessly integrate
specialized environmental and ecological impact models as submodules.
Given the focus on the F2E program, we introduced a model for calcu-
lating residents’ energy demand and carbon footprint, supporting a
comprehensive evaluation of socioeconomic and ecological impacts.
Drawing from previous research (Zhu, 2004) and fieldwork experience,
we observe that households involved in multiple businesses consume
more energy both in productive activities and daily lives. Therefore, we
use the number of business engagements for households as a proxy
variable to calculate their energy demand. In addition, to account for
potential additional energy demand generated by the “homestay lod-
ging” industry, we introduced the factor of households’ available
properties for hosting guests. Considering these factors, we defined total
energy demand (TEND) as the dependent variable, with the household
type (determined by the number of businesses: 1 business= 1; 2 busi-
nesses= 2; 3 businesses= 3), real estate area, and the number of rooms as
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independent variables. A household energy demand model was fitted
using field survey data from 239 households in Wolong, with the results
presented in Table 3. The model exhibits a goodness-of-fit of 0.46, and
all independent variables have passed the significance test at the p < 0.1
level.

Following the calculation of total energy demand, we next determine
the proportion supplied by electricity—a critical factor due to the high
price elasticity of electricity demand (Jorgenson, Slesnick, Stoker, and
Moroney, 1987). We employ the previously defined household type
proxy variable, coupled with the binary indicator for “homestay lodging
industry involvement” (1 for involvement, 0 for no involvement), to
calculate the household’s total electricity demand (TELD). The results
presented in Table 4 reveal a model with a goodness-of-fit of 0.50, with
all independent variables significant at the p < 0.1 level. The remainder
of the energy demand, unmet by electricity, is fulfilled by firewood,
which, based on local survey data, has an energy equivalence of 1 kg to
2.25 kWh of electricity.

3.2.2. Firewood collection

To evaluate the ecological impact of household firewood demand,
we explicitly model firewood collection behavior. This model not only
assesses the direct effects of firewood collection on habitat but also in-
tegrates firewood collection into the economic sub-module, revealing
complex dynamics within the socio-ecological system through potential
chain reactions.

Firewood remains a crucial energy source for cooking and heating in
rural areas of many developing countries (An, Lupi, Liu, Linderman, and
Huang, 2002; Chomitz and Griffiths, 2001), and its use persists in pro-
tected areas (Liu et al., 2003). In Wolong, recent surveys indicate that
following the ban on logging, residents have resorted to gathering
naturally fallen wood and cutting shrubs for firewood. To simulate these
real-world conditions, the model defines a grid map representing fire-
wood resources, which have been considered constant for a few years.
Villagers collect firewood in groups, and studies suggest that a mixed
forest within a 90 x 90 m grid cell can sustain a household’s firewood
needs for approximately four years (An et al., 2005).

The firewood collection activity is modeled in two steps. The first
step involves a path search algorithm that determines the route to the
collection area based on cost distance, which is primarily influenced by
slope resistance. The modeled area is partitioned into a grid system, and
before each iteration, a partition statistics tool calculates the average
resource values for each grid block. Blocks with resource values
exceeding a predefined threshold are designated as firewood collection
zones. Villagers aim to minimize the time spent collecting firewood by
utilizing local knowledge to identify these zones. Thus, the path search
behavior is characterized by local optimization with an element of
randomness and is implemented using a roulette wheel algorithm.
Starting from the villagers’ initial location, the algorithm calculates the
travel costs to adjacent grid cells and iterates until a designated firewood
collection zone is reached.

The second step is a random walk-based collection behavior after
reaching the area. The firewood collection behavior is set as a random
walk algorithm with a step size of 1 grid until the required amount of
firewood is collected. Once firewood collection is complete, the villagers
return to the village, the module stops iterating, and the area of human
firewood collection activities is updated (Fig. 4).

3.3. Comprehensive policy evaluation

3.3.1. Evaluation indicators

The model generates a range of statistical data to evaluate its oper-
ational performance. In the single-policy evaluation of G2G and F2E
programs, the focus is placed on policy expenditures and their direct
effects, which are reflected by reverted farmland area and firewood
consumption respectively. For the dual-policy evaluation, which ex-
amines the combined impacts of these two programs, the analysis
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extends to their comprehensive impacts on the Wolong socio-ecological
system. These impacts are assessed using three key indicators: carbon
footprint, habitat quality, and gross economic benefits. Among all the
above indicators, habitat quality is derived from agricultural and fire-
wood collection activities and the extent of vegetation succession, while
others are directly based on the model outputs.

(1) Carbon Footprint: Wolong’s integration into the national grid
makes it difficult to determine the exact proportion of hydro-
power consumption. The coincidence of local peak electricity
demand with the winter dry season further reduces the share of
hydropower. These systemic constraints necessitate adopting the
national grid-average emission factor. Based on the carbon
calculator provided by the Ministry of Science and Technology of
the People’s Republic of China,” we adopt carbon dioxide emis-
sion factors of 1.4375 kg COy/kg for firewood and 0.96 kg CO,/
kWh for electricity, to calculate the local carbon footprint.
Although grid electricity based on the above data exhibits a
higher carbon intensity per unit of energy produced than fire-
wood burning, this disparity does not compromise the validity of
the comparative policy analysis since all evaluated scenarios
maintain consistent emission intensity ratios.

(2) Habitat Quality: This study employs the methodology of Li et al.
(2010), which takes into account the species’ habitat preferences,
including preferences for flat or gently sloping areas with bamboo
and forest cover, and the influence of human activities like
farming, firewood collecting, and transportation on giant panda’s
behavior. In the assessment indicator system, seven key factors
were identified from topographical, biotic, and anthropogenic
disturbance perspectives, including slope, proximity to streams,
land cover types, bamboo species, and distances to roads, farm-
lands, and residential areas. After determining the weights of
each indicator using the Analytic Hierarchy Process (AHP), a
weighted composite analysis in ArcGIS was conducted with var-
iable maps to produce an integrated habitat quality map. The
overall habitat quality index for the study area was derived by
aggregating the quality values across all grid cells.

(3) Gross Economic Benefits: This indicator is derived by subtracting
“Financial Burden” from “Gross Economic Revenues”, both
generated directly by the model. “Financial Burden” refers to the
aggregate expenditure of both programs and “Gross Economic
Revenues” denotes the collective income of all households across
various business sectors, mainly including agriculture, temp job,
and lodging. The indicator “Gross Economic Benefits” focuses on
comprehensively reflecting the expenditure and the correspond-
ing economic influence, instead of the real economic benefits of
policy implementation.

3.3.2. Evaluation methods

This article delves into two methodologies—Cost-efficiency analysis
and Multi-Objective Optimization—that are meticulously applied to
evaluate the performance of different policy initiatives. By under-
standing how these methods are utilized, we can gain valuable insights
into the optimal allocation of resources and the achievement of policy
objectives.

(1) Cost-efficiency analysis: Essential in both public administration
and the private sector, this evaluative tool serves as a critical
gauge of an organization’s, system’s, or service’s resource utili-
zation efficiency in achieving defined outcomes (Piacenza, 2006).

2 The carbon calculator provided by the Ministry of Science and Technology
of the People’s Republic of China (http://www.acca2l.org.cn/eser/counter/
index.htm), published in 2008, provides an accurate depiction of the national
average carbon emission levels during that period.
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It focuses on the interplay between inputs and outputs, aiming to
optimize output at minimal cost or to enhance output under input
constraints. In our study, policy financial burdens are categorized
as inputs, with outputs tailored to the specific programs analyzed.
For example, in the G2G program, the output is measured by the
area of reverted farmland, while in the F2E program, it is
measured by electricity consumption. In dual-policy fiscal anal-
ysis, outputs include the three core objective indicators outlined
in Section 3.3.1. By aligning output metrics with program char-
acteristics, we ensure a more accurate and comprehensive
assessment of policies, avoiding financial waste.
(2) Multi-objective optimization

a) Pareto analysis: Recognized as a critical approach for Multi-
Objective Optimization (MOO), this method has garnered significant
attention for its efficacy in identifying trade-off solutions across various
objectives. Central to Pareto analysis is the concept of Pareto dominance
(Gunantara, 2018), where a solution is said to dominate others if it is not
inferior in all objectives and superior in at least one. This comparative
analysis across objectives enables the identification of a set of Pareto
optimal solutions, constituting the Pareto frontier, which provides in-
sights into the trade-offs among objectives. Pareto analysis was
employed to assess the collective impact of the G2G and F2E programs
on Wolong and to explore optimal policy combination scenarios across
the three objectives such as Gross Financial Benefits (GFB), Carbon
Footprint (CF), and Habitat Quality (HQ). Formally, for a set of policy
combinations P = {p1,pa2, -:-,Pn}, @ solution p; is Pareto-optimal if no
other solution p; exists such that:

fi(p) = fulpi) vk € {GFB.CF,HQ).
and fi, (pj) > fm(p:i)for at least one m € {GFB, CF,HQ}

where fj (pj) represents the performance of policy p; on objective k,
and m is a specific objective where p; strictly outperforms p;.

b)Posterior Pareto optimization: To make a choice based on the
trade-offs observed in the Pareto frontier set, this study uses target lines,
budget control lines, and indifference curves to assess policy benefits
holistically. The target and budget control lines constrain direct effects
like reverted farmland area and firewood consumption.

i. Target line: Sets minimum policy requirements, such as the
required minimum reverted land area for G2G programs.

ii. Budget control line: Reflects possible direct benefit combinations
within a specific budget. The total budget expenditure equals the
sum of the G2G and F2E project budgets. Due to the complex
nonlinear relationship between firewood consumption and F2E
policy expenditure, electricity consumption serves as a direct
effect indicator for the F2E program. Mathematically, the budget
constraint is defined as:

CGzG 'Areverted + CFZE “Econsumed = Biotal

where Cgoc and Cpog are the per-unit compensation/subsidy rates
for the G2G and F2E programs. Ayeyerteq is the area of the reverted
farmland, and E ,nsumeq is the total electricity consumption. By
is the total budget.

iii. Indifference curve: Captures the indirect effects of policy, drawn
by establishing the functional relationship between the direct
benefits and the three indirect influencing effects. The indiffer-
ence curve is defined as:

U(Areverted + EComumed) =C

where U is the utility function, and C is a constant representing
the level of indirect benefits.


http://www.acca21.org.cn/eser/counter/index.htm
http://www.acca21.org.cn/eser/counter/index.htm
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Fig. 4. Schematic diagram of the firewood collection algorithm. Path-optimized random walk model incorporating resource distribution and terrain constraints

through cost-distance analysis.
3.4. Data

SEEMS relies on accurate data describing the behavioral character-
istics of agents and general socio-ecological conditions in the study area.
Behavioral data were derived from roughly 1000 h of field surveys and
239 household interviews, representing about one-fifth of the house-
holds in Wolong. Qualitative and quantitative data were collected via
structured interviews and questionnaires. Furthermore, data on topog-
raphy, land use/land cover, vegetation, demographics, and socio-
economic statistics were provided by the National Nature Reserve
Administration and local authorities in Wolong. The data were orga-
nized into four datasets: individuals, households, industries, and land
use. For detailed descriptions of the data structure and content, see the
Supplementary Materials (Table S1).

3.5. Simulation, indicator output, validation, and uncertainty analysis

After the 2008 earthquake, significant destruction occurred to local
farmland, housing, and other capital assets. These transformations led to
a significant shift in Wolong’s socio-economic-ecological system in
2008. Therefore, we selected 2010, the year marking the preliminary
completion of post-disaster reconstruction, as the starting point for our
simulation. This choice also allows a long enough time range for retro-
spective model validation. The simulation spans a 14-year period, which
is suitable for capturing medium to short-term variability in model pa-
rameters, minimizing the influence of long-term changes in parameters,
such as economic income, and aligning with the vegetation succession
cycle.

It is important to note that the study employs a stochastic algorithm,
introducing uncertainty in conclusions at the micro-agent level, such as
specific land use changes, family incomes, savings, debt status, and
electricity usage. Therefore, conclusions are statistically valid only at the
societal level. To minimize uncertainty from randomness, the model was
run 30 times, and the average outcomes were considered the definitive
results. Detailed output indices are provided in the Supplementary
Materials (Table S2).

A primary method for validating an agent-based model (ABM) is to

infer and examine the accuracy of its predictions. For model validation,
we use comprehensive demographic and economic data from the
Wolong region, grounded in empirical observations. Calibration against
historical data is typically the most effective approach, where a past
reference point is selected to initiate model runs and assess how well the
outcomes align with actual data. Specifically, our model validation
employs metrics such as population and household growth rates, as well
as economic growth rate and structure. The validation results for the
baseline model, as detailed in the SEEMS publication (Chen et al., 2023),
demonstrate broad agreement with observed real-world scenarios. Since
the extensions introduced in this study do not significantly alter the
baseline model’s core socio-economic and ecological dynamics, the
baseline model’s validation supports the reliability of the current model.

Given the complexity of ABMs, comprehensive validation using all
output indicators is generally impractical. In this study’s expanded
model, parameters such as firewood-to-electricity conversion rates and
carbon footprint equivalents are chosen based on empirical experience.
While these parameters affect the absolute values of simulation out-
comes, our primary focus is on the relative performances and the
sensitivity of outcomes to changes in inputs and policy conditions.
Recognizing that validation poses inherent challenges for all ABMs, re-
searchers often rely on "common sense" as a last resort, which is also
adopted in this study (Brown, Page, Riolo, Zellner, and Rand, 2005;
Robinson, Brown, and Currie, 2009).

4. Results
4.1. Cost-efficiency analysis: the grain-to-green (G2G) program

To prevent potential interference from the F2E policy on the simu-
lation outcomes of the G2G program, this study set the subsidized
electricity price level at 0.65 CNY/kWh, effectively simulating a sce-
nario without electricity subsidies. Detailed data are shown in the
Supplementary Materials (Table S3).

We illustrate the variations in policy expenditure, land use change,
carbon footprint, and habitat quality across a compensation range from
0 to 2000 CNY/Mu (Fig. 5). Regarding policy cost-effectiveness, Fig. 5a
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Fig. 5. The cost-efficiency analysis of the G2G program: (a) G2G Total Financial Compensation by G2G compensation Over Years, (b) Total Reverted Farmland Area
by G2G compensation Over Years, (¢) G2G Total Financial Compensation V.S. Total Reverted Farmland Area in 2024. Increasing compensation linearly raises
converted farmland but shows diminishing returns above 1000 CNY/Mu. The optimal balance is 600 CNY/Mu.

and b demonstrate a rising trend in both total financial cost and reverted
farmland area as compensation levels increase. Specifically, upon the
compensation rising from 400 to 600 CNY/Mu (~942-1413 USD/ha),
there is a significant expansion in both indicators. Additionally, upon
reaching the compensation of 1000 CNY/Mu (~2355 USD/ha), a
threshold effect emerges: the area of reverted farmland continues to
increase with rising compensation up to this level, after which the rate of
growth declines annually. To further analyze the relationship between
policy expenditure and reverted farmland area, we conducted a focused
analysis of 2024 data (Fig. 5c). The findings indicate a monotonically
increasing non-linear correlation between the two indicators, with a
breakpoint around 600 CNY/Mu, identifying this as the relatively
optimal subsidy level. Beyond this threshold, higher compensation
yields diminishing marginal returns for expanding farmland reversion.
The compensation may exceed the agricultural revenue, calculated
based on the opportunity cost of labor, potentially leading to wasted
funds.

4.2. Cost-efficiency analysis: the firewood-to-electricity (F2E) program

Similar to the analysis of the G2G program, we set the G2G
compensation price at 0 CNY/Mu to evaluate the isolated impact of the
F2E program. Detailed data are shown in the Supplementary Materials
(Table S4).

10

Fig. 6a shows the positive correlation between total subsidies paid to
households and subsidized electricity price levels, with an upward trend
for F2E financial subsidy over the years. Additionally, when the subsi-
dized electricity price drops to 0.3 CNY/kWh (~0.047 USD/kWh), a
similar reduction in price results in a more substantial increase in policy
expenditure. Fig. 6b reveals the complex nonlinear relationship between
firewood consumption and subsidized electricity prices. Compared to
the scenario with a subsidized electricity price of 0.65 CNY/kWh (no
F2E policy implemented), lower firewood consumption under various
subsidy levels proves the policy’s effectiveness. Moderate price levels of
0.4 and 0.5 CNY/kWh (~0.063 & 0.079 USD/kWh) result in lower
firewood consumption, whereas higher (0.65 and 0.6 CNY/kWh) and
lower (0.1 CNY/kWh) levels are associated with significantly higher
firewood consumption. Although a subsidy of 0.05 CNY/kWh corre-
sponds to the lowest firewood consumption, it also requires a substan-
tially higher cost. Using 2024 data as an example (Fig. 6), further
reducing the electricity price to 0.2 CNY/kWh or 0.05 CNY/kWh ach-
ieves even lower firewood consumption, but the costs are 4-10 times
higher than those required at the 0.4-0.5 CNY/kWh level. Therefore, the
optimal cost-effective subsidized electricity price range for the F2E
program is between 0.4 and 0.5 CNY/kWh.
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Fig. 6. The cost-efficiency analysis of the F2E program: (a) F2E financial subsidy by electricity subsidy over years, (b) Total firewood consumption by electricity
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viability, identifying the cost-effectiveness sweet spot.

4.3. Dual-policy analysis

4.3.1. Comprehensive cost-efficiency analysis

To analyze the cost-effectiveness under dual policy interventions for
various scenarios, we used 2024 as a reference year and plotted the
relationship between the financial burden of G2G and F2E programs and
the three objectives of carbon footprint, habitat quality, and total
financial revenue. For detailed data on outcomes, see the Supplementary
Materials (Table S5).

Fig. 7a illustrates the relationship between total program expendi-
ture and carbon emissions.® Overall, no discernible trend is evident
between total policy expenditure and carbon emissions. In the high
expenditure range, however, the prevalence of blue data points indicates
a marked decline in the cost-effectiveness of carbon reduction when the
subsidized electricity price in the F2E program drops to 0.15 CNY/kWh
(~0.0236 USD/kWh) or lower. Concurrently, within the low to mod-
erate expenditure range, the dual policy impacts on carbon emissions
are diffuse, with emissions likely influenced by multiple factors beyond
these policies alone.

3 The coordinate axes of the carbon footprint in the graph were reversed, to
improve the readability of the figure.
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Fig. 7b demonstrates a positive correlation between total program
expenditure and habitat quality. Notably, the effect of G2G subsidies on
both indicators is consistent across varying F2E subsidy levels, which
means under the same G2G compensation level, the level of subsidized
electricity price has little impact on habitat quality. Consequently,
increasing the proportion of G2G compensation under a fixed expendi-
ture more effectively enhances habitat quality.

Fig. 7c illustrates the relationship between total program expendi-
ture and total economic income. Overall, total economic income initially
declines and subsequently rises with increasing policy expenditure. At
subsidized electricity prices above 0.25 CNY/kWh (~0.0393 USD/
kWh), subsidy levels in both programs markedly impact both total
expenditure and economic income. The data distribution suggests a non-
linear relationship between these indicators, aligning with the prior
analysis of farmland reversion’s economic impact: at lower policy
expenditure levels, increased spending may reduce economic income,
possibly due to insufficient subsidies to offset economic losses from
decreased incentives to pursue additional income. However, when pol-
icy expenditure reaches a certain threshold, economic income starts to
rise, possibly reflecting the gradual emergence of policy benefits.

4.3.2. Pareto analysis results
Pareto analysis is a systematic approach for evaluating and selecting
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Fig. 7. The cost-efficiency analysis of objectives: (a) Financial Burden V.S. Carbon Footprint in 2024, (b) Financial Burden V.S. Habitat Quality in 2024, (c) Financial
Burden V.S. Gross Economic Benefits in 2024. Budget trade-offs reveal: (a) no carbon-budget correlation, (b) linear habitat improvement, and (c¢) U-shaped eco-

nomic returns.

optimal balances among multiple objectives. Identifying Pareto-optimal
policy combinations allows for a deeper understanding of the potential
impacts of varying policy choices. In this study, we used 2024 simulation
data to perform a Pareto optimization analysis on three primary in-
dicators: carbon footprint, habitat quality, and gross economic benefits.
By calculating Pareto dominance relationships among policy combina-
tions, we identify solutions that are not dominated across any of the
objectives, thereby forming a Pareto frontier. This frontier represents
the optimal balance achievable under current conditions. By this
method, we identified approximately 18 Pareto-optimal policy combi-
nations from the full set of policy options (Fig. 8) ,4 where no other
combination can simultaneously improve all three indicators. What's
more, gross economic benefits generally inversely correlate with carbon
footprint, reflecting the inherent conflict and trade-off between eco-
nomic benefits and environmental outcomes.

To clearly represent the performance of each Pareto-optimal policy
combination on the three target indicators, we divide the overall

4 The coordinate axes of the carbon footprint in the graph were reversed, to
improve the readability of the figure.
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distribution range of the best combinations on each indicator into four
equal parts: ‘-, -, +, ++’, representing performance from relatively
worst to relatively best (Table 5). Certain policy combinations (e.g.,
(0.55, 1800), (0.65, 1900), and (0.4, 1900)) exhibit similar classification
performance, despite a non-dominanted relationship in specific objec-
tive values. Notably, these combinations excel across all indicators,
demonstrating an optimal balance between economic benefits and
environmental protection.

4.3.3. Posterior Pareto optimization

Classifying the performance of the Pareto solution set with respect to
explicit policy goals helps decision-makers choose specific policy op-
tions based on their preferences. However, to find the overall optimal
solution that considers not only the explicit policy goals but also the
comprehensive socio-economic, ecological, and fiscal outcomes and
constraints, additional in-depth analysis is necessary. Hence, we further
offer a framework for posterior optimization based on budget con-
straints, policy objectives, and effect preferences. To plot the budget
constraint lines and indifference curves, this study established the
functional relationships between the project’s direct benefits—reverted
land area and electricity consumption—and the policy expenditure,
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Table 5

Optimal policy combinations and their performances on target indicators. The
table categorizes the performance of 18 optimal policy combinations on gross
financial benefits, carbon footprint, and habitat quality using a four-level clas-
sification system (“-, -, +, ++7).

F2E G2G Gross financial Carbon Habitat
(CNY/ (CNY/ benefits footprint quality
kwWh) Mu)
1 0.35 900 - ++ +
2 0.25 600 - ++ -
3 0.20 1800 - ++ ++
4 0.55 400 - ++ -
5 055 1700 - + ++
6 0.25 1700 - ++ ++
7 0.60 1800 - ++ +
8 065 2000 + ++ -
9 0.55 1800 + ++
10 0.65 1900 + + ++
11 055 100 + + -
12 0.40 1900 + + ++
13 0.55 200 + + -
14  0.35 2000 + - ++
15 0.20 0 ++ + -
16 0.35 0 ++ + -
17 0.35 100 ++ - -
18  0.65 0 ++ - -

* 1 CNY (Yuan) =~ 0.157 Dollars.
* 1Mu ~ 0.067 Hectares.

Table 6

Model function expressions and fitting performance metrics. The table summa-
rizes the functional relationships and R? values for the G2G budget model, F2E
budget model, habitat quality model, and gross economic benefits model.

Model Train Test R?
R2
G2G budget Y =axeX ¢ a =1.8845,b =0.0047, 0.9485 0.8962
model c = 226,620.6
F2Ebudget ¥ = aX,2+bX; + a—=1.9104x108,b— 0.9965  0.9979
model c 0.5094,
c =-824,291.4
Habitat Y =po+ X1+ By =-0.9578, p = 0.9192  0.8914
quality PoXo + P3X3 + 1.5254,
model PaX1Xo + fsX3+ , = 0.0776, 3 =
X+ 1.5801, i, = -0.0047,
PrXiKa + gsgo(;o/j o ﬂg 0062
3 - s Pz =-0. s
BsX1 X3+ PoX3 By = 0.0200, fo —
-0.0423
Economic Y = fo+ fuX1 + Bo = -0.2455, p; = 0.5010  0.5000
benefits PoXo + X3 + -0.1137, g, = -0.3466,
model BaX1Xo + fsX3 3 =0.3029, g, =

0.0281, f5 = -0.086

* X1: Total reverted farmland area.
* Xy: Total electricity consumption.

along with three indirect factors in Pareto analysis. The specific func-
tional relationships and fitting effects are detailed in Table 6. Except for
the Gross Economic Benefits models, which have relatively low R?
values (explaining only 50 % of data variability), the other models
adequately account for the data variability. For the habitat quality
model, cubic fitting, as opposed to quadratic fitting, can markedly
enhance the R? value from 0.8851 to 0.9192, indicating a better fit to the
data. The carbon emission equivalent curve wasn’t plotted because of
the complex nonlinear relationship between carbon emissions and the
two direct benefits and the difficulty in finding a fitting function. The
carbon emission status for specific scenarios can be determined by the
colors of Pareto optimal solution points.

As shown in Fig. 9, when the real-world conditions are, for example,
that the budget has to be capped at 5 million CNY (~11.775 million
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USD), the annual reforested area is required to exceed 2500 Mu (~166.7
ha), and greater emphasis is placed on habitat quality and carbon
emissions, the policy combination with a G2G compensation of 900
CNY/Mu (~2119.5 USD/ha) and a subsidized electricity price of 0.35
CNY/kWh (0.05495 USD/ kWh) turns out to be the one that aligns most
closely with these requirements.

Fig. 9 also delineates the interplay between direct and indirect
benefits. The total budget curve shows when the area of reverted
farmland falls below 2000 Mu (~133.3 ha), its influence on the total
policy budget is negligible. The gross economic benefits curve reveals an
inflection point at approximately 2700 Mu (~180 ha) of reverted land.
Surpassing this threshold necessitates an increase in both reverted land
and electricity consumption to sustain equivalent economic benefits,
which means further reallocating agricultural labor to other sectors is
unlikely to yield substantial economic gains. The habitat quality curve
shows minimal sensitivity to electricity consumption, with the minimum
reverted farmland area required to maintain a given level of habitat
quality occurring at around 7 million kWh of electricity consumption.

5. Conclusion and discussion

This research delves into achieving a balance between ecological
conservation and economic growth within the constraints of a limited
budget. By developing the Socio-Econ-Ecosystem Multipurpose Simu-
lator (SEEMS), we model the implementation outcomes of Grain-to-
Green (G2G) and Firewood-to-Electricity (F2E) programs at the
Wolong National Reserve.

The individual policy cost-efficiency analysis uncovers the nonlinear
relationship between policy outcomes and compensation levels, with
optimal effects observed at approximately 500 CNY/Mu (~1177.5 USD/
ha) for G2G and a subsidized electricity rate of 0.4-0.5 CNY/kWh
(~0.063-0.079 USD/kWh) for F2E. Nonetheless, beyond a certain
threshold, the incremental benefits of increased compensation or sub-
sidies diminish, underscoring the significance of identifying the most
cost-effective policy design.

The dual-policy comprehensive cost-efficiency analysis reveals that
total financial burden is not strongly correlated with carbon emissions
but is positively associated with habitat quality. A noteworthy phe-
nomenon emerges that gross economic benefits are lowest at mid-range
financial expenditure levels. This phenomenon can be explained by
integrating changes in economic structure with revenue fluctuations. At
lower compensation thresholds, farmers may experience increased
financial stress, prompting them to seek additional income streams, such
as non-agricultural employment, to offset the income loss from aban-
doning farming and enhance overall income. At higher compensation
standards, households with labor-dominant profiles are more likely to
engage in the project, receive periodic compensation, and transition to
other sectors, which can augment their business revenue and boost
overall earnings. However, at medium subsidy standards, farmers rely
on compensations to sustain a basic livelihood, diminishing their drive
to seek extra income sources. Additionally, the compensation is insuf-
ficient for a complete transition to other sectors, limiting the potential
growth of total income. This result highlights an intriguing principle of
policy implementation: full non-enforcement or stringent enforcement is
preferred. A seemingly moderate approach may lead to the most unde-
sirable outcomes.

Of course, this is merely a reflection of a single target, and it does not
justify the outright dismissal of policy options associated with moderate
financial burden levels. Instead, a multi-objective assessment is required
to gauge the appropriate and precise intensity of policy enforcement,
which underscores the significance of Pareto analysis. Pareto analysis
inherently results in a solution set with multiple non-dominated solu-
tions, none of which are optimal across all objectives. Consequently,
real-world constraints and decision-maker preferences serve as the tie-
breaking points among these solutions. By considering both direct and
indirect benefits comprehensively, we introduce the target constraint
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Fig. 8. Pareto-optimal policy combinations in the of gross economic benefits, carbon footprint, and habitat quality in 2024. All subfigures display the same set of
Pareto-optimal solutions, each highlighting the trade-offs between two indicators while holding the third constant.
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line, budget control line, and indifference curve. Through Posterior
Pareto optimization, we can further select a policy combination that
aligns more closely with actual situation constraints and objectives.

This study offers a comprehensive analysis of ecological conservation
policies in the Wolong National Reserve, highlighting two main aspects
of significance. First, as a critical node within the human-biosphere
network, Wolong plays a vital role in global ecosystem conservation
efforts. Second, the challenges faced by Wolong—balancing economic
development with ecological protection in a sensitive environment—are
common issues encountered throughout the developing world. These
challenges often involve managing complex natural ecosystems amid
growing economic demands and population pressures, while navigating
the unintended consequences of narrowly focused public policies.
Effective conservation requires careful trade-offs between competing
programs, all within the constraints of limited budgets. In this light,
Wolong serves as a model case for understanding the political-ecological
dilemmas that arise in similar contexts. Addressing these challenges in
Wolong could provide valuable insights for other regions worldwide
facing comparable ecological and developmental tensions.
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