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A B S T R A C T

Balancing human development with conservation necessitates ecological policies that optimize outcomes within 
limited budgets, highlighting the importance of cost-efficiency and local impact analysis. This study employs the 
Socio-Econ-Ecosystem Multipurpose Simulator (SEEMS), an Agent-Based Model (ABM) designed for simulating 
small-scale Coupled Human and Nature Systems (CHANS), to evaluate the cost-efficiency of two major ecology 
conservation programs: Grain-to-Green (G2G) and Firewood-to-Electricity (F2E). Focusing on China’s Wolong 
National Reserve, a worldwide hot spot for flagship species conservation, the study evaluates the direct benefits 
of these programs, including reverted farmland area and firewood consumption, along with their combined 
indirect benefits on habitat quality, carbon emissions, and gross economic benefits. The findings are as follows: 
(1) The G2G program achieves optimal financial efficiency at approximately 500 CNY/Mu (~1177.5 USD/ha), 
with diminishing returns observed beyond 1000 CNY/Mu (~2355 USD/ha); (2) For the F2E program, the most 
fiscally cost-efficient option arises when the subsidized electricity price is at 0.4–0.5 CNY/kWh (~0.063–0.079 
USD/kWh), while further reductions of the prices to below 0.1 CNY/kWh (~0.0157 USD/kWh) result in a 
diminishing cost-benefit ratio; (3) Comprehensive cost-efficiency analysis reveals no significant link between 
financial burden and carbon emissions, but a positive correlation with habitat quality and an inverted U-shaped 
relationship with total economic income; (4) Pareto analysis identifies 18 optimal dual-policy combinations for 
balancing carbon footprint, habitat quality, and gross economic benefits; (5) Posterior Pareto optimization 
further refines the selection of a specific policy scheme for a given realistic scenario. The analytical framework of 
this paper helps policymakers design economically viable and environmentally sustainable policies, addressing 
global conservation challenges.

1. Introduction

Preserving ecological diversity and promoting economic growth are 
both major aims among the United Nation’s Sustainable Development 
Goals (SDGs) (United Nation, 2015), while only too often the two wit
ness conflicts. In ecologically sensitive areas, the imperative to preserve 
biodiversity often clashes with the need for local development (Kang 
et al., 2021). The situation is especially critical in developing countries, 
where the pervasive natural resource extraction-dependent economic 
model creates a contest for scarce resources like land, energy, and 

biomass, intensifying the tension between economic development and 
ecological conservation (Ghoddousi et al., 2022; Zeng et al., 2023). A 
variety of policies for harmonizing species protection and human 
development has been proposed in the existing literature, such as the 
Ecological Compensation Program, a financial transfer mechanism that 
mitigates the negative influences of developing activities on the natural 
environment (Cuperus et al., 1996; Jeník, 2002; Wunder, 2005).

Nevertheless, two crucial challenges emerge in designing such pol
icies, namely the precision design of the program, as well as their cost- 
efficiency. On the one hand, as socio-ecological systems are 
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characterized by complex interconnections and feedback loops, where 
single-focus policies may produce unforeseeable consequences, 
designing effective conservation policies requires precision in imple
mentation to achieve ecological objectives without unintended side ef
fects (Andres et al., 2012; Van der Ploeg and Withagen, 2015). On the 
other hand, ecological preservation policies are often funded through 
financial transfers, but in developing countries, the demand for con
servation funding usually far exceeds available resources (Balmford 
et al., 2003). As protecting all habitats at the highest compensation 
levels is not financially viable, this necessitates trade-offs between sce
narios with potentially conflicting objectives to achieve the best out
comes at the lowest possible cost.

China’s Wolong National Reserve presents a vivid example of the 
above-stated challenges. As the largest and most critical habitat for the 
giant panda in China, Wolong is globally significant for its high biodi
versity and diverse landscapes, which also support other important 
species like the snow leopard and golden monkey. Wolong has hence 
been identified as one of the 25 biodiversity hotspots for conservation 
priorities (Myers et al., 2000), included in Global 200 Ecoregions (Olson 
and Dinerstein, 2003) by Conservation International (CI) and World 
Wildlife Fund (WWF) respectively, and also listed as a World Heritage by 
the UNESCO World Heritage Centre in 2006. However, aside from its 
global conservation significance, Wolong has been inhabited by humans 
for over 500 years, with approximately 5000 residents currently residing 
there. Human activities, such as agriculture and firewood collection 
have been pillars supporting the local self-sufficient economy (Liu et al., 
1999; Ouyang et al., 2001), while the increasing magnitude of such 
activities with the population growth in the past few decades, along with 
an emerging tourism sector which also indirectly depends on natural 
resource extraction have increasingly threatened the fragile balance 
between human livelihoods and natural ecosystems. The issue of 
reconciling human development with species conservation faced by 
Wolong is so pronounced that it is listed as one of the seven most dis
cussed regions in global Land Use and Land Cover Change (LUCC) 
studies (Rindfuss et al., 2007), as well as one of the six most critical sites 
for human-nature system coupling research globally (Liu et al., 2007). 
Unfortunately, despite the extensive research on giant panda conser
vation (Kang, 2022), the socioeconomic development of Wolong’s 
human residents has been relatively insufficient (An et al., 2001, 2006; 
Xu et al., 2006), revealing a significant gap in designing ecological 
preservation policies in such regions.

In this paper, with Wolong as an exemplar case, we address the two 
challenges through designing and implementing a complex-system 
simulation-based, multi-objective decision-making system, which is an 
expansion of the Socio-Econ-Ecosystem Multipurpose Simulator 
(SEEMS) (Chen et al., 2023). By design, the system effectively responds 
to the above-stated two challenges.

First, the design of SEEMS follows a complex-system paradigm, such 
as to reflect the Complex Adaptive Systems (CAS) (Lansing, 2003; 
Schneider and Somers, 2006) nature of the socio-ecological system in 
Wolong. Particularly, Wolong is regarded as a typical Coupled Human 
and Natural System (CHANS), where human activities and ecological 
processes are interlinked through complex feedback loops, which evolve 
over time and are subject to the influence of various internal and 
external shocks, and macro-level socio-ecological patterns emerge from 
the aggregation of micro-scale actions (Alberti et al., 2011; Liu et al., 
2007; Sheppard and McMaster, 2008). All these complications render 
precise prediction of the outcome of any conservation policy difficult. 
For example, the farmland-reverting program may facilitate a boom in 
grain-consuming wildlife such as boars, which intensifies the 
human-wildlife tension and discourages local residents from signing in 
the program; or, for another example, subsidizing electricity use, which 
is intended to suppress firewood-collecting inflicted human intervention 
on wildlife habitats, may prove a disserve as more tourists are attracted 
to the habitats by the improved accommodation thanks to the conve
nience brought about by electricity-powered apparatus. Fortunately, 

compared to the more conventional top-down approach (An and 
López-Carr, 2012; Field et al., 2006), the intrinsic bottom-up design of 
SEEMS, like other Agent-based Models (ABM) (Parker et al., 2003), 
helps simulate the phenomenon of “emergence”, i.e., complex outcomes 
out of relatively simple rules of interactions between the human/societal 
agents, wildlife, and the natural environment (Lansing, 2003; Schneider 
and Somers, 2006), and is therefore especially suitable for our research 
purpose. Furthermore, SEEMS is tailored to a small CHANS with an open 
economy, easy to expand with additional policy-related modules, and is 
also easy to implement for its minimal data requirements. Therefore, 
through including conservation policies as "global controllers", SEEMS 
allows for a systematic evaluation of their benefits, drawbacks, and 
trade-offs, such as responding to the precision policy design challenge, 
and enabling us to answer key research questions including what are the 
actual ecological, economic, and social impacts of the policies, and how 
can one choose the most effective policy intervention strategies to 
optimize socio-ecological system welfare.

Second, we integrate SEEMS within a multi-objective optimization 
framework, to fulfill the needs for decision-making with various direct 
and implicit goals, constraints, and preferences. On the one hand, 
ecological protection policies entail both direct benefits and complex 
indirect impacts. For example, the farmland-reverting program directly 
increases reverted farmland area, and potentially releases agricultural 
labor. When combined with initiatives to subsidize electricity use, 
enhancing the appeal of tourism as an employment sector, these two 
programs collectively reshape the local employment landscape. More
over, subsidized electricity initiatives not only reduce habitat distur
bances for giant pandas by limiting firewood collection, but also affect 
carbon emissions via changes in community energy consumption pat
terns. Clearly, a single-benefit evaluation method falls short in 
addressing these trade-offs, necessitating multi-objective optimization 
methods for better decision support. Pareto optimization is valuable for 
balancing objectives, especially conflicting ones. A solution within the 
Pareto optimal set is such that there is no other solution that can 
improve at least one objective without worsening any of the others (Deb, 
2001). This also indicates that no single solution can achieve optimality 
across all objectives at once. On the other hand, to make the final de
cision, real-world constraints, particularly budget limitations, and 
decision-maker preferences must be incorporated into the 
decision-making process (Rachmawati and Srinivasan, 2006; Williams 
and Kendall, 2017). Indeed, a key challenge in policy design under 
limited financial resources is achieving ecological protection goals at the 
lowest cost. Cost-efficiency analysis is essential for identifying optimal 
resource allocation strategies, ensuring that limited financial resources 
are used to maximize policy effectiveness (Athanassopoulos and Tri
antis, 1998). The budget constraint line serves as a practical tool in this 
context. By mapping out this line, decision-makers can clearly visualize 
the various combinations of resource allocations that are feasible within 
budgetary limits (Meyer and Shipley, 1970). Indifference curves, 
meanwhile, are vital for understanding decision-maker preferences, 
which show combinations of two attributes with the same utility 
(Knetsch, 1989; Samuelson, 1956). They can not only display the 
trade-off and substitution relationship between the two attributes, but 
also reveal benefit distribution via multiple curves, helping 
decision-makers quickly identify favorable attribute combination re
gions. Therefore, the study combines Pareto analysis, budget constraint 
lines, and indifference curves to assess the overall benefits of different 
ecological protection policies. This integrated approach provides 
decision-makers with an optimal solution that screens out the range of 
policy combinations that best meet the preferences of the 
decision-maker within the budget.

The rest of this paper is organized as follows: Section 2 provides a 
background of the Wolong National Reserve, details its specific chal
lenges, and introduces candidate ecological protection plans to evaluate. 
Section 3 outlines the modeling strategy, including model verification 
and validation, performance metrics, and data sources. Section 4 
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presents the simulation results, and performs multi-objective evaluation 
of viable policy choices under different scenarios. Finally, Section 5 
offers conclusions and suggests directions for future research.

2. Research area and backgrounds

2.1. Ecological challenges and policy interventions in Wolong National 
Reserve

Wolong is located in a remote, mountainous area. Before the estab
lishment of the nature reserve, the residents lived largely in autarky. 
With the rapid growth of China’s development, the local economy has 

also changed. Particularly since 2000, the introduction of cash crops and 
eco-tourism has significantly increased residents’ income, and the local 
economy has gradually evolved into a small and open economic system 
mainly based on expanding agriculture and service industries.

The natural resource-dependent economic development model in 
Wolong has created a competition between economic development and 
the protection of the habitats of giant pandas and other species. The 
main scarce resources at stake are energy and land. Specifically, two 
kinds of human activities threaten the habitat: agricultural activities and 
firewood collection (Liu et al., 1999; Ouyang et al., 2001), both tradi
tional components of the self-sufficient economy. Owing to the high 
altitude and cold climate, energy issues plague the residents in the long 

Fig. 1. The map of Wolong National Reserve.11 Spatial overlap between firewood collection zones and panda habitats highlights habitat degradation risks requiring 
policy coordination.
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term. Firewood is the traditional energy source, and its collection 
significantly harms the giant panda habitat. Additionally, due to popu
lation pressure, local farmers have historically converted forests and 
bamboo groves into farmland, severely damaging the habitat (Fig. 1). 
Although deforestation for agricultural expansion was forbidden in the 
early 2000s, existing farmland already fragments the main habitats, 
letting alone potential enforcement issues. Furthermore, recent eco
nomic growth has expanded the scale of these activities. The first reason 
is that cash crop introduction has made agriculture profitable, which 
further stimulates the motivation for cultivation. Additionally, the rise 
of tourism has increased energy demand and has stimulated the demand 
for agricultural and specialty products, leading to further agricultural 
expansion. In summary, the increased range and intensity of human 
activities inevitably encroach upon wildlife habitats. Areas of intense 
human activity coincide with the primary habitat of the giant panda, 
posing a great threat to the habitat quality.

To enhance habitat conservation, the local government has imple
mented ecological conservation plans for energy and land use since the 
early 2000s. These plans encourage more sustainable and 

environmentally friendly production and lifestyle while compensating 
for potential economic losses from adopting ecological practices. Spe
cifically, they encompass two key programs: the Grain-to-Green (G2G) 
program, and the Firewood-to-Electricity (F2E) program. The G2G 
program encourages converting farmland back to forest or bamboo 
groves and provides annual compensation to offset the income loss of 
giving agriculture up (Deng et al., 2014; Uchida et al., 2005). The F2E 
program involves constructing small hydropower stations to generate 
electricity and encouraging the use of electricity over firewood by 
electricity price subsidies. This plan is expected to aid in habitat pro
tection by discouraging illegal firewood collection (Wu et al., 2019). In 
addition, both programs help to unleash the labor force in rural 
households and offer potential new economic opportunities. For the F2E 
program, the energy upgrade can provide better living conditions, thus 
enabling farmers to enter the more lucrative homestay lodging business. 
In principle, both programs are voluntary, allowing households to 
independently decide whether to participate (Table 1).

While the implementation of these policies has initiated some 
changes, the anticipated goals have not been fully achieved due to 
inherent flaws in program design and budget constraints. The G2G 
program, for instance, has experienced a decline in public participation, 
resulting in overall performance that falls short of initial expectations. 

Conversely, the F2E program promotes increased electricity consump
tion, but it cannot entirely replace firewood, and occasional firewood 
collection continues, undermining the protective effect. Additionally, 
the hydropower station construction for electricity production may 
introduce negative environmental externalities that further complicate 
conservation efforts. Therefore, revising and improving these programs 
is urgently needed to achieve optimal conservation outcomes. Moreover, 
both programs provide incentives for the local households to turn to the 
so-called “eco-tourism”, which, though, turned out not “ecological” 
enough. Energy modernization per se leads to increased resource con
sumption and waste production (Greening et al., 2000; Herring, 2006). 
Also, enhanced mobility through electric vehicles can extend the spatial 
footprint of human disturbance, and almost inevitably attract tourists 
deeper into wildlife habitats, affecting wildlife habitats over a larger 
area and for longer durations.

The conservation policies within the Wolong National Reserve have 
garnered significant academic attention. Early studies investigated the 
impact of farming and firewood collection on giant panda habitats and 
regional landscapes (Bearer et al., 2008), identified spatial patterns of 
firewood collection (He et al., 2009; Linderman et al., 2005), and 
employed ABM to examine dynamic changes in population character
istics and their relationship with panda habitat (An et al., 2001, 2005, 
2006). These studies have laid a solid foundation for our research but 

Table 1 
Details of the G2G and F2E programs. Key differences in economic, labor, and 
ecological impacts between participants and non-participants of the G2G and 
F2E programs.

G2G F2E

​ Participant Non- 
participant

Participant Non- 
participant

Household 
direct 
economic loss

Agriculture 
income loss

No Additional 
payment for 
electricity

No

Household 
Revenues

Policy 
compensation

No Subsidized 
electricity 
price

No

Impact on the 
workforce

+ – + –

Impact on other 
economic 
opportunities

No No Possibility to 
work in a high- 
income 
industry

No

Impact on 
ecology

+ – + –

Impact on 
carbon 
footprint

– + – +

Table 2 
Policies Scenario matrix. 273 scenarios testing G2G (0–2000 CNY/Mu) & F2E (0.05–0.65 CNY/kWh) combinations for simulation and policy assessment.

G2G_Compensation level (0–2000 CNY/Mu)*

0 100 200 … 1000 … 2000

F2E_Subsidized electricity price 
(CNY/kWh)

0.65 GG0/ 
FE0.65

GG100/ 
FE0.65

GG200/ 
FE0.65

​ GG100/ 
FE0.65

​ GG2000/ 
FE0.65

0.60 GG0/ 
FE0.60

GG100/ 
FE0.60

GG200/ 
FE0.60

​ GG100/ 
FE0.60

​ GG2000/ 
FE0.60

0.55 GG0/ 
FE0.55

GG100/ 
FE0.55

GG200/ 
FE0.55

​ GG100/ 
FE0.55

​ GG2000/ 
FE0.55

… … … … … … … …
0.40 GG0/ 

FE0.40
GG100/ 
FE0.40

GG200/ 
FE0.40

… GG100/ 
FE0.40

… GG2000/ 
FE0.40

0.10 GG0/ 
FE0.10

GG100/ 
FE0.10

GG200/ 
FE0.10

… GG100/ 
FE0.10

… GG2000/ 
FE0.10

0.05 GG0/ 
FE0.05

GG100/ 
FE0.05

GG200/ 
FE0.05

​ GG350/ 
FE0.01

​ GG2000/ 
FE0.05

* 1 CNY (Yuan) ≈ 0.157 Dollars.
* 1Mu ≈ 0.067 Hectares.

1 Data source: Sichuan Wolong National Natural Reserve Administration; The 
Third National Giant Panda Population Survey. Map lines delineate study areas 
and do not necessarily depict accepted national boundaries
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also have some limitations. Primarily, these studies are nearly two de
cades old, and the socio-ecological system in Wolong, particularly its 
economic structure, has undergone significant transformation since 
then. Economic shifts and the surge in tourism have greatly increased 
the complexity of the Wolong socio-economic-ecological system, 
rendering previous economic models less applicable. Moreover, 
although there are no budget constraints for any program for the 
moment, they will eventually face a budget cap. Therefore, local au
thorities must judiciously allocate transferred funds to achieve optimal 
long-term outcomes.

The challenges of low public participation, and the intricate inter
play between the two programs, along with the associated ecological 
and economic issues, underscore the importance of precise policy 
design, multi-dimensional evaluation, and long-term simulation. These 
elements are essential for optimizing resource allocation and achieving 
effective conservation outcomes.

2.2. Policy options and scenarios design

Apparently, price, namely the compensation or subsidy standards, 
plays a central role in this decision-making problem. We use a policy 
scenario analysis to explore optimal policy selection for the Wolong 
National Reserve. Each plan can implement different compensation or 
subsidy standards, allowing for a range of condition combinations 
(Table 2). The primary goal is to maximize conservation effectiveness 
within budget constraints, measured by habitat integrity and green
house gas emissions while minimizing negative impacts on the liveli
hoods of residents.

In the current scenario, there are no budgetary constraints, with the 
government temporarily covering all implementation costs. Economic 
development is a lower priority for the Wolong National Reserve, so our 
assessment focuses on comparing ecological protection performance, 
economic opportunities for residents, and government expenditure on 
compensation and subsidies. This approach aims to identify general 
relationships and determine the optimal policy combination for various 
objectives, such as maximizing conservation outcomes, achieving cost- 
effectiveness, and enhancing economic impacts.

For the scenario simulations, we set specific subsidy amounts based 
on real-world conditions. The simulated compensation range for the 
Grain-to-Green (G2G) program is from 0 to 2000 CNY/Mu (~4710 USD/ 

ha), with simulations conducted in increments of 100 CNY/Mu (~233.5 
USD/ha). For the Firewood-to-Electricity (F2E) program, we use the 
standard electricity price of 0.65 CNY/kWh (~0.102 USD/kWh) as the 
upper limit, with simulations conducted in increments of 0.05 CNY/kWh 
(~0.079 USD/kWh). All these ranges reflect the actual compensation 
and subsidy levels provided by the government currently.

3. Materials and methods

The SEEMS model framework developed in this study (Fig. 2) pro
vides a systematic representation of system components and their 
interconnected feedback mechanisms. To assess the synergistic in
teractions between G2G and F2E policies within the CHANS of Wolong 
Nature Reserve, this study enhances the baseline framework originally 
designed for single-policy (G2G) evaluation. Key modifications include 
the integration of an F2E policy-driving module and the incorporation of 
composite evaluation metrics, enabling the model to simulate dual- 
policy scenarios. The following sections detail the base model, the 
expansion, as well as the output evaluation indicators and methods.

3.1. SEEMS: the base model

We use the Socio-Econ-Ecosystem Multipurpose Simulator (SEEMS) 
as the main evaluation tool, with necessary expansions to adapt to this 
research’s aims. SEEMS is an agent-based model designed to simulate 
the operation of a small-scale, agriculture-centric, open socio-econ- 
ecological system and generate scenarios for assessing alternative fu
tures. It can simulate the decision-making process of individual and 
household agents in economic activities, along with the associated so
cial, economic, and ecological impacts. By monitoring the performance 
indicators of land use, and economic and ecological aspects, researchers 
can evaluate policy effectiveness by visualizing diverse outcomes. 
Hence, by design, SEEMS is a suitable tool for studying Wolong’s 
ecological preservation policy-making. A comprehensive description of 
its baseline configuration is available in prior work (Chen et al., 2023), 
with this section offering an overview of its principal design concepts.

SEEMS operates across four levels: individuals, households, society, 
and the environment. Individuals are the fundamental agents, with be
haviors encompassing birth, growth, education, marriage, childbirth 
and migration. Households are the basic actors, and they evolve with the 

Fig. 2. Overall framework of the expanded SEEMS model. Integrates dynamic feedback between household energy structure, business decisions, land-use conversion, 
and ecological responses. The expansion of the base model and outputs enables SEEMS multi-policy analytical capability.
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dynamic changes of their members and participate in most socio- 
economic-ecological processes. Society serves as a container for house
holds and their relationships, as well as the stage for all socio-economic 
activities and policies. The environment, in turn, forms the spatial and 
ecological context, interacting with socio-economic elements across 
various dimensions.

SEEMS comprises two main subsystems: the human system and the 
nature system, which interact through a series of feedback mechanisms. 
The Human System contains the Socioeconomic Sub-Model, focusing on 
household-level decisions and behaviors, such as business choices and 
financial income, to simulate household responses to policies based on 
their preferences and resources. It also includes other sub-models related 
to demographic dynamics, social interactions, and accounting processes, 
covering population changes and economic indicators like household 
income and expenditures. The Nature System features the Ecosystem 
Sub-Model, simulating natural processes such as vegetation succession 
and biogeochemical cycles, to model environmental changes over time 
and their impacts on humans. Additionally, the Nature System can be 
extended with sub-models for habitat quality evaluation to enhance its 
functionality. Furthermore, policies are viewed as global variables that 
influence the system in multiple ways. In certain scenarios, a house
hold’s acceptance of a policy may lead to adjustments in their produc
tive resources. For instance, accepting an energy upgrade frees a 
significant portion of a household’s labor force from firewood collection. 
In other cases, policy interventions modify decision-making parameters, 
such as recalculating business costs for households with subsidized 
electricity. These policy applications act as constraints or stimuli within 
SEEMS, generating distinct scenario outcomes (Fig. 3).

Compared to other ABMs (Singh, Squire, and Strauss, 1986), the 
human system in SEEMS is uniquely tailored with a microeconomic 

foundation for small-scale and open rural economies. The fundamental 
concept of SEEMS emphasizes the behaviors of heterogeneous agents 
making decisions to maximize effectiveness, guided by their inherent 
preferences. The introduction of heterogeneous agents is crucial for 
accurately reflecting real-world situations in ABMs (Aydilek and Aydi
lek, 2020; Gallen, 2021). The model specifically considers two types of 
preferences: the income-leisure trade-off and risk attitude, which are 
recognized as critical determinants of production behaviors in rural 
economic studies (Becker, 1988; Huang, 1990). Once preferences are 
ensured, the household agents can take action for productive decisions. 
Household agents possess a set of productive resources: labor (L), land 
(T), and capital (K), choosing from a range of available businesses to 
maximize effectiveness. Considering the model’s design, simplification, 
and the focus of this study on evaluating ecological conservation policies 
in Wolong National Reserve, we primarily defined three business types 
directly related to the policies: agriculture, lodging, and temporary jobs. 
Households with different preferences have different optimization goals. 
Profit-maximizing households determine their production possibility 
frontier (PPF) with given L, T, and K, aiming to maximize profits within 
that frontier. In contrast, a leisure-maximizing household aims to 
minimize labor investment (L) while maintaining a baseline profit. 
These optimization problems can be solved through a rule-based itera
tive approach.

The nature system in SEEMS models the local ecosystem’s func
tioning. Because of the inherent unpredictability of wildlife behaviors, 
ecological conservation objectives are assessed indirectly through sim
ulations of habitat conditions. The main function of this system is to 
simulate landscape evolution in the study area, following the vegetation 
succession rules in the ecosystem (Clements, 1916; Curtis and McIntosh, 
1951; Yunus et al., 2020).

Fig. 3. The overall structure of SEEMS. System dynamics integrating human activities, ecological processes, and policy modules to simulate conservation- 
development trade-offs through socio-ecological feedback.
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SEEMS integrates the socio-economic-ecological system by modeling 
interactions between the human and nature subsystems, resulting in 
macro-emergent outcomes. These interactions include the impact of 
human activities on natural habitats (e.g., farming, housing, and infra
structure construction) and the influence of wildlife activities on human 
production and life. These interactions are bidirectional and iterative, 
capturing non-linear outcomes from a series of repetitive interactions, 
thereby fully reflecting the complex nature of CHANS.

3.2. Expansion of SEEMS

In this research, we have tailor-extended the baseline model to better 
accommodate the unique conditions of the Wolong National Reserve 
and evaluate specific policies. This section elaborates on these 
extensions.

3.2.1. Energy demand
One advantage of SEEMS is its ability to seamlessly integrate 

specialized environmental and ecological impact models as submodules. 
Given the focus on the F2E program, we introduced a model for calcu
lating residents’ energy demand and carbon footprint, supporting a 
comprehensive evaluation of socioeconomic and ecological impacts. 
Drawing from previous research (Zhu, 2004) and fieldwork experience, 
we observe that households involved in multiple businesses consume 
more energy both in productive activities and daily lives. Therefore, we 
use the number of business engagements for households as a proxy 
variable to calculate their energy demand. In addition, to account for 
potential additional energy demand generated by the “homestay lod
ging” industry, we introduced the factor of households’ available 
properties for hosting guests. Considering these factors, we defined total 
energy demand (TEND) as the dependent variable, with the household 
type (determined by the number of businesses: 1 business= 1; 2 busi
nesses= 2; 3 businesses= 3), real estate area, and the number of rooms as 

independent variables. A household energy demand model was fitted 
using field survey data from 239 households in Wolong, with the results 
presented in Table 3. The model exhibits a goodness-of-fit of 0.46, and 
all independent variables have passed the significance test at the p < 0.1 
level.

Following the calculation of total energy demand, we next determine 
the proportion supplied by electricity—a critical factor due to the high 
price elasticity of electricity demand (Jorgenson, Slesnick, Stoker, and 
Moroney, 1987). We employ the previously defined household type 
proxy variable, coupled with the binary indicator for “homestay lodging 
industry involvement” (1 for involvement, 0 for no involvement), to 
calculate the household’s total electricity demand (TELD). The results 
presented in Table 4 reveal a model with a goodness-of-fit of 0.50, with 
all independent variables significant at the p < 0.1 level. The remainder 
of the energy demand, unmet by electricity, is fulfilled by firewood, 
which, based on local survey data, has an energy equivalence of 1 kg to 
2.25 kWh of electricity.

3.2.2. Firewood collection
To evaluate the ecological impact of household firewood demand, 

we explicitly model firewood collection behavior. This model not only 
assesses the direct effects of firewood collection on habitat but also in
tegrates firewood collection into the economic sub-module, revealing 
complex dynamics within the socio-ecological system through potential 
chain reactions.

Firewood remains a crucial energy source for cooking and heating in 
rural areas of many developing countries (An, Lupi, Liu, Linderman, and 
Huang, 2002; Chomitz and Griffiths, 2001), and its use persists in pro
tected areas (Liu et al., 2003). In Wolong, recent surveys indicate that 
following the ban on logging, residents have resorted to gathering 
naturally fallen wood and cutting shrubs for firewood. To simulate these 
real-world conditions, the model defines a grid map representing fire
wood resources, which have been considered constant for a few years. 
Villagers collect firewood in groups, and studies suggest that a mixed 
forest within a 90 × 90 m grid cell can sustain a household’s firewood 
needs for approximately four years (An et al., 2005).

The firewood collection activity is modeled in two steps. The first 
step involves a path search algorithm that determines the route to the 
collection area based on cost distance, which is primarily influenced by 
slope resistance. The modeled area is partitioned into a grid system, and 
before each iteration, a partition statistics tool calculates the average 
resource values for each grid block. Blocks with resource values 
exceeding a predefined threshold are designated as firewood collection 
zones. Villagers aim to minimize the time spent collecting firewood by 
utilizing local knowledge to identify these zones. Thus, the path search 
behavior is characterized by local optimization with an element of 
randomness and is implemented using a roulette wheel algorithm. 
Starting from the villagers’ initial location, the algorithm calculates the 
travel costs to adjacent grid cells and iterates until a designated firewood 
collection zone is reached.

The second step is a random walk-based collection behavior after 
reaching the area. The firewood collection behavior is set as a random 
walk algorithm with a step size of 1 grid until the required amount of 
firewood is collected. Once firewood collection is complete, the villagers 
return to the village, the module stops iterating, and the area of human 
firewood collection activities is updated (Fig. 4).

3.3. Comprehensive policy evaluation

3.3.1. Evaluation indicators
The model generates a range of statistical data to evaluate its oper

ational performance. In the single-policy evaluation of G2G and F2E 
programs, the focus is placed on policy expenditures and their direct 
effects, which are reflected by reverted farmland area and firewood 
consumption respectively. For the dual-policy evaluation, which ex
amines the combined impacts of these two programs, the analysis 

Table 3 
Household total energy demand model. The model estimates the relationship 
between household characteristics (type, area of room, and number of rooms) 
and total energy demand (TEND). All independent variables are significant at 
the p < 0.1 level, and the model demonstrates a goodness-of-fit (R²) of 0.46.

Model Unstandardized 
coefficients

Standardized 
coefficients

t Sig.

B Std β

1 Constant 6.069 0.140 ​ 43.451 0.000
Household 
type

0.205 0.049 0.337 4.215 0.000

Area of room 0.050 0.029 0.138 1.723 0.087
Number of 
rooms

0.009 0.005 0.134 1.660 0.099

* Dependent variable: Lg TEND.

Table 4 
Household total electricity demand model. The model estimates the relationship 
between household characteristics (area of room, business type, and household 
type) and total electricity demand (TELD). All independent variables are sig
nificant at the p < 0.1 level, and the model demonstrates a goodness-of-fit (R²) of 
0.50.

Model Unstandardized 
coefficients

Standardized 
coefficients

t Sig.

B Std β

1 Constant 5.684 0.146 ​ 39.035 0.000
Area of room 0.072 0.028 0.164 2.608 0.010
Business type 0.447 0.120 0.243 3.716 0.000
Household 
type

0.216 0.051 0.285 4.269 0.000

* Dependent variable: Lg TELD.
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extends to their comprehensive impacts on the Wolong socio-ecological 
system. These impacts are assessed using three key indicators: carbon 
footprint, habitat quality, and gross economic benefits. Among all the 
above indicators, habitat quality is derived from agricultural and fire
wood collection activities and the extent of vegetation succession, while 
others are directly based on the model outputs. 

(1) Carbon Footprint: Wolong’s integration into the national grid 
makes it difficult to determine the exact proportion of hydro
power consumption. The coincidence of local peak electricity 
demand with the winter dry season further reduces the share of 
hydropower. These systemic constraints necessitate adopting the 
national grid-average emission factor. Based on the carbon 
calculator provided by the Ministry of Science and Technology of 
the People’s Republic of China,2 we adopt carbon dioxide emis
sion factors of 1.4375 kg CO2/kg for firewood and 0.96 kg CO2/ 
kWh for electricity, to calculate the local carbon footprint. 
Although grid electricity based on the above data exhibits a 
higher carbon intensity per unit of energy produced than fire
wood burning, this disparity does not compromise the validity of 
the comparative policy analysis since all evaluated scenarios 
maintain consistent emission intensity ratios.

(2) Habitat Quality: This study employs the methodology of Li et al. 
(2010), which takes into account the species’ habitat preferences, 
including preferences for flat or gently sloping areas with bamboo 
and forest cover, and the influence of human activities like 
farming, firewood collecting, and transportation on giant panda’s 
behavior. In the assessment indicator system, seven key factors 
were identified from topographical, biotic, and anthropogenic 
disturbance perspectives, including slope, proximity to streams, 
land cover types, bamboo species, and distances to roads, farm
lands, and residential areas. After determining the weights of 
each indicator using the Analytic Hierarchy Process (AHP), a 
weighted composite analysis in ArcGIS was conducted with var
iable maps to produce an integrated habitat quality map. The 
overall habitat quality index for the study area was derived by 
aggregating the quality values across all grid cells.

(3) Gross Economic Benefits: This indicator is derived by subtracting 
“Financial Burden” from “Gross Economic Revenues”, both 
generated directly by the model. “Financial Burden” refers to the 
aggregate expenditure of both programs and “Gross Economic 
Revenues” denotes the collective income of all households across 
various business sectors, mainly including agriculture, temp job, 
and lodging. The indicator “Gross Economic Benefits” focuses on 
comprehensively reflecting the expenditure and the correspond
ing economic influence, instead of the real economic benefits of 
policy implementation.

3.3.2. Evaluation methods
This article delves into two methodologies—Cost-efficiency analysis 

and Multi-Objective Optimization—that are meticulously applied to 
evaluate the performance of different policy initiatives. By under
standing how these methods are utilized, we can gain valuable insights 
into the optimal allocation of resources and the achievement of policy 
objectives. 

(1) Cost-efficiency analysis: Essential in both public administration 
and the private sector, this evaluative tool serves as a critical 
gauge of an organization’s, system’s, or service’s resource utili
zation efficiency in achieving defined outcomes (Piacenza, 2006). 

It focuses on the interplay between inputs and outputs, aiming to 
optimize output at minimal cost or to enhance output under input 
constraints. In our study, policy financial burdens are categorized 
as inputs, with outputs tailored to the specific programs analyzed. 
For example, in the G2G program, the output is measured by the 
area of reverted farmland, while in the F2E program, it is 
measured by electricity consumption. In dual-policy fiscal anal
ysis, outputs include the three core objective indicators outlined 
in Section 3.3.1. By aligning output metrics with program char
acteristics, we ensure a more accurate and comprehensive 
assessment of policies, avoiding financial waste.

(2) Multi-objective optimization

a) Pareto analysis: Recognized as a critical approach for Multi- 
Objective Optimization (MOO), this method has garnered significant 
attention for its efficacy in identifying trade-off solutions across various 
objectives. Central to Pareto analysis is the concept of Pareto dominance 
(Gunantara, 2018), where a solution is said to dominate others if it is not 
inferior in all objectives and superior in at least one. This comparative 
analysis across objectives enables the identification of a set of Pareto 
optimal solutions, constituting the Pareto frontier, which provides in
sights into the trade-offs among objectives. Pareto analysis was 
employed to assess the collective impact of the G2G and F2E programs 
on Wolong and to explore optimal policy combination scenarios across 
the three objectives such as Gross Financial Benefits (GFB), Carbon 
Footprint (CF), and Habitat Quality (HQ). Formally, for a set of policy 
combinations P = {p1, p2, ⋯, pn}, a solution pi is Pareto-optimal if no 
other solution pj exists such that: 

fk

(
pj

)
≥ fk(pi) ∀k ∈ {GFB,CF,HQ},

and fm

(
pj

)
> fm(pi)for at least one m ∈ {GFB,CF,HQ}

where fk
(

pj

)
represents the performance of policy pj on objective k, 

and m is a specific objective where pj strictly outperforms pi.
b)Posterior Pareto optimization: To make a choice based on the 

trade-offs observed in the Pareto frontier set, this study uses target lines, 
budget control lines, and indifference curves to assess policy benefits 
holistically. The target and budget control lines constrain direct effects 
like reverted farmland area and firewood consumption. 

i. Target line: Sets minimum policy requirements, such as the 
required minimum reverted land area for G2G programs.

ii. Budget control line: Reflects possible direct benefit combinations 
within a specific budget. The total budget expenditure equals the 
sum of the G2G and F2E project budgets. Due to the complex 
nonlinear relationship between firewood consumption and F2E 
policy expenditure, electricity consumption serves as a direct 
effect indicator for the F2E program. Mathematically, the budget 
constraint is defined as: 

CG2G⋅Areverted + CF2E⋅Econsumed = Btotal 

where CG2G and CF2E are the per-unit compensation/subsidy rates 
for the G2G and F2E programs. Areverted is the area of the reverted 
farmland, and Econsumed is the total electricity consumption. Btotal 
is the total budget.

iii. Indifference curve: Captures the indirect effects of policy, drawn 
by establishing the functional relationship between the direct 
benefits and the three indirect influencing effects. The indiffer
ence curve is defined as: 

U(Areverted +EConsumed) = C 

where U is the utility function, and C is a constant representing 
the level of indirect benefits.

2 The carbon calculator provided by the Ministry of Science and Technology 
of the People’s Republic of China (http://www.acca21.org.cn/eser/counter/ 
index.htm), published in 2008, provides an accurate depiction of the national 
average carbon emission levels during that period.
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3.4. Data

SEEMS relies on accurate data describing the behavioral character
istics of agents and general socio-ecological conditions in the study area. 
Behavioral data were derived from roughly 1000 h of field surveys and 
239 household interviews, representing about one-fifth of the house
holds in Wolong. Qualitative and quantitative data were collected via 
structured interviews and questionnaires. Furthermore, data on topog
raphy, land use/land cover, vegetation, demographics, and socio- 
economic statistics were provided by the National Nature Reserve 
Administration and local authorities in Wolong. The data were orga
nized into four datasets: individuals, households, industries, and land 
use. For detailed descriptions of the data structure and content, see the 
Supplementary Materials (Table S1).

3.5. Simulation, indicator output, validation, and uncertainty analysis

After the 2008 earthquake, significant destruction occurred to local 
farmland, housing, and other capital assets. These transformations led to 
a significant shift in Wolong’s socio-economic-ecological system in 
2008. Therefore, we selected 2010, the year marking the preliminary 
completion of post-disaster reconstruction, as the starting point for our 
simulation. This choice also allows a long enough time range for retro
spective model validation. The simulation spans a 14-year period, which 
is suitable for capturing medium to short-term variability in model pa
rameters, minimizing the influence of long-term changes in parameters, 
such as economic income, and aligning with the vegetation succession 
cycle.

It is important to note that the study employs a stochastic algorithm, 
introducing uncertainty in conclusions at the micro-agent level, such as 
specific land use changes, family incomes, savings, debt status, and 
electricity usage. Therefore, conclusions are statistically valid only at the 
societal level. To minimize uncertainty from randomness, the model was 
run 30 times, and the average outcomes were considered the definitive 
results. Detailed output indices are provided in the Supplementary 
Materials (Table S2).

A primary method for validating an agent-based model (ABM) is to 

infer and examine the accuracy of its predictions. For model validation, 
we use comprehensive demographic and economic data from the 
Wolong region, grounded in empirical observations. Calibration against 
historical data is typically the most effective approach, where a past 
reference point is selected to initiate model runs and assess how well the 
outcomes align with actual data. Specifically, our model validation 
employs metrics such as population and household growth rates, as well 
as economic growth rate and structure. The validation results for the 
baseline model, as detailed in the SEEMS publication (Chen et al., 2023), 
demonstrate broad agreement with observed real-world scenarios. Since 
the extensions introduced in this study do not significantly alter the 
baseline model’s core socio-economic and ecological dynamics, the 
baseline model’s validation supports the reliability of the current model.

Given the complexity of ABMs, comprehensive validation using all 
output indicators is generally impractical. In this study’s expanded 
model, parameters such as firewood-to-electricity conversion rates and 
carbon footprint equivalents are chosen based on empirical experience. 
While these parameters affect the absolute values of simulation out
comes, our primary focus is on the relative performances and the 
sensitivity of outcomes to changes in inputs and policy conditions. 
Recognizing that validation poses inherent challenges for all ABMs, re
searchers often rely on "common sense" as a last resort, which is also 
adopted in this study (Brown, Page, Riolo, Zellner, and Rand, 2005; 
Robinson, Brown, and Currie, 2009).

4. Results

4.1. Cost-efficiency analysis: the grain-to-green (G2G) program

To prevent potential interference from the F2E policy on the simu
lation outcomes of the G2G program, this study set the subsidized 
electricity price level at 0.65 CNY/kWh, effectively simulating a sce
nario without electricity subsidies. Detailed data are shown in the 
Supplementary Materials (Table S3).

We illustrate the variations in policy expenditure, land use change, 
carbon footprint, and habitat quality across a compensation range from 
0 to 2000 CNY/Mu (Fig. 5). Regarding policy cost-effectiveness, Fig. 5a 

Fig. 4. Schematic diagram of the firewood collection algorithm. Path-optimized random walk model incorporating resource distribution and terrain constraints 
through cost-distance analysis.
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and b demonstrate a rising trend in both total financial cost and reverted 
farmland area as compensation levels increase. Specifically, upon the 
compensation rising from 400 to 600 CNY/Mu (~942–1413 USD/ha), 
there is a significant expansion in both indicators. Additionally, upon 
reaching the compensation of 1000 CNY/Mu (~2355 USD/ha), a 
threshold effect emerges: the area of reverted farmland continues to 
increase with rising compensation up to this level, after which the rate of 
growth declines annually. To further analyze the relationship between 
policy expenditure and reverted farmland area, we conducted a focused 
analysis of 2024 data (Fig. 5c). The findings indicate a monotonically 
increasing non-linear correlation between the two indicators, with a 
breakpoint around 600 CNY/Mu, identifying this as the relatively 
optimal subsidy level. Beyond this threshold, higher compensation 
yields diminishing marginal returns for expanding farmland reversion. 
The compensation may exceed the agricultural revenue, calculated 
based on the opportunity cost of labor, potentially leading to wasted 
funds.

4.2. Cost-efficiency analysis: the firewood-to-electricity (F2E) program

Similar to the analysis of the G2G program, we set the G2G 
compensation price at 0 CNY/Mu to evaluate the isolated impact of the 
F2E program. Detailed data are shown in the Supplementary Materials 
(Table S4).

Fig. 6a shows the positive correlation between total subsidies paid to 
households and subsidized electricity price levels, with an upward trend 
for F2E financial subsidy over the years. Additionally, when the subsi
dized electricity price drops to 0.3 CNY/kWh (~0.047 USD/kWh), a 
similar reduction in price results in a more substantial increase in policy 
expenditure. Fig. 6b reveals the complex nonlinear relationship between 
firewood consumption and subsidized electricity prices. Compared to 
the scenario with a subsidized electricity price of 0.65 CNY/kWh (no 
F2E policy implemented), lower firewood consumption under various 
subsidy levels proves the policy’s effectiveness. Moderate price levels of 
0.4 and 0.5 CNY/kWh (~0.063 & 0.079 USD/kWh) result in lower 
firewood consumption, whereas higher (0.65 and 0.6 CNY/kWh) and 
lower (0.1 CNY/kWh) levels are associated with significantly higher 
firewood consumption. Although a subsidy of 0.05 CNY/kWh corre
sponds to the lowest firewood consumption, it also requires a substan
tially higher cost. Using 2024 data as an example (Fig. 6), further 
reducing the electricity price to 0.2 CNY/kWh or 0.05 CNY/kWh ach
ieves even lower firewood consumption, but the costs are 4–10 times 
higher than those required at the 0.4–0.5 CNY/kWh level. Therefore, the 
optimal cost-effective subsidized electricity price range for the F2E 
program is between 0.4 and 0.5 CNY/kWh.

Fig. 5. The cost-efficiency analysis of the G2G program: (a) G2G Total Financial Compensation by G2G compensation Over Years, (b) Total Reverted Farmland Area 
by G2G compensation Over Years, (c) G2G Total Financial Compensation V.S. Total Reverted Farmland Area in 2024. Increasing compensation linearly raises 
converted farmland but shows diminishing returns above 1000 CNY/Mu. The optimal balance is 600 CNY/Mu.
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4.3. Dual-policy analysis

4.3.1. Comprehensive cost-efficiency analysis
To analyze the cost-effectiveness under dual policy interventions for 

various scenarios, we used 2024 as a reference year and plotted the 
relationship between the financial burden of G2G and F2E programs and 
the three objectives of carbon footprint, habitat quality, and total 
financial revenue. For detailed data on outcomes, see the Supplementary 
Materials (Table S5).

Fig. 7a illustrates the relationship between total program expendi
ture and carbon emissions.3 Overall, no discernible trend is evident 
between total policy expenditure and carbon emissions. In the high 
expenditure range, however, the prevalence of blue data points indicates 
a marked decline in the cost-effectiveness of carbon reduction when the 
subsidized electricity price in the F2E program drops to 0.15 CNY/kWh 
(~0.0236 USD/kWh) or lower. Concurrently, within the low to mod
erate expenditure range, the dual policy impacts on carbon emissions 
are diffuse, with emissions likely influenced by multiple factors beyond 
these policies alone.

Fig. 7b demonstrates a positive correlation between total program 
expenditure and habitat quality. Notably, the effect of G2G subsidies on 
both indicators is consistent across varying F2E subsidy levels, which 
means under the same G2G compensation level, the level of subsidized 
electricity price has little impact on habitat quality. Consequently, 
increasing the proportion of G2G compensation under a fixed expendi
ture more effectively enhances habitat quality.

Fig. 7c illustrates the relationship between total program expendi
ture and total economic income. Overall, total economic income initially 
declines and subsequently rises with increasing policy expenditure. At 
subsidized electricity prices above 0.25 CNY/kWh (~0.0393 USD/ 
kWh), subsidy levels in both programs markedly impact both total 
expenditure and economic income. The data distribution suggests a non- 
linear relationship between these indicators, aligning with the prior 
analysis of farmland reversion’s economic impact: at lower policy 
expenditure levels, increased spending may reduce economic income, 
possibly due to insufficient subsidies to offset economic losses from 
decreased incentives to pursue additional income. However, when pol
icy expenditure reaches a certain threshold, economic income starts to 
rise, possibly reflecting the gradual emergence of policy benefits.

4.3.2. Pareto analysis results
Pareto analysis is a systematic approach for evaluating and selecting 

Fig. 6. The cost-efficiency analysis of the F2E program: (a) F2E financial subsidy by electricity subsidy over years, (b) Total firewood consumption by electricity 
subsidy over years, (c) F2E financial subsidy V.S. total firewood consumption in 2024. 0.4–0.5 CNY/kWh electricity subsidy achieves firewood reduction with fiscal 
viability, identifying the cost-effectiveness sweet spot.

3 The coordinate axes of the carbon footprint in the graph were reversed, to 
improve the readability of the figure.
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optimal balances among multiple objectives. Identifying Pareto-optimal 
policy combinations allows for a deeper understanding of the potential 
impacts of varying policy choices. In this study, we used 2024 simulation 
data to perform a Pareto optimization analysis on three primary in
dicators: carbon footprint, habitat quality, and gross economic benefits. 
By calculating Pareto dominance relationships among policy combina
tions, we identify solutions that are not dominated across any of the 
objectives, thereby forming a Pareto frontier. This frontier represents 
the optimal balance achievable under current conditions. By this 
method, we identified approximately 18 Pareto-optimal policy combi
nations from the full set of policy options (Fig. 8) ,4 where no other 
combination can simultaneously improve all three indicators. What’s 
more, gross economic benefits generally inversely correlate with carbon 
footprint, reflecting the inherent conflict and trade-off between eco
nomic benefits and environmental outcomes.

To clearly represent the performance of each Pareto-optimal policy 
combination on the three target indicators, we divide the overall 

distribution range of the best combinations on each indicator into four 
equal parts: ‘–, -, +, ++’, representing performance from relatively 
worst to relatively best (Table 5). Certain policy combinations (e.g., 
(0.55, 1800), (0.65, 1900), and (0.4, 1900)) exhibit similar classification 
performance, despite a non-dominanted relationship in specific objec
tive values. Notably, these combinations excel across all indicators, 
demonstrating an optimal balance between economic benefits and 
environmental protection.

4.3.3. Posterior Pareto optimization
Classifying the performance of the Pareto solution set with respect to 

explicit policy goals helps decision-makers choose specific policy op
tions based on their preferences. However, to find the overall optimal 
solution that considers not only the explicit policy goals but also the 
comprehensive socio-economic, ecological, and fiscal outcomes and 
constraints, additional in-depth analysis is necessary. Hence, we further 
offer a framework for posterior optimization based on budget con
straints, policy objectives, and effect preferences. To plot the budget 
constraint lines and indifference curves, this study established the 
functional relationships between the project’s direct benefits—reverted 
land area and electricity consumption—and the policy expenditure, 

Fig. 7. The cost-efficiency analysis of objectives: (a) Financial Burden V.S. Carbon Footprint in 2024, (b) Financial Burden V.S. Habitat Quality in 2024, (c) Financial 
Burden V.S. Gross Economic Benefits in 2024. Budget trade-offs reveal: (a) no carbon-budget correlation, (b) linear habitat improvement, and (c) U-shaped eco
nomic returns.

4 The coordinate axes of the carbon footprint in the graph were reversed, to 
improve the readability of the figure.
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along with three indirect factors in Pareto analysis. The specific func
tional relationships and fitting effects are detailed in Table 6. Except for 
the Gross Economic Benefits models, which have relatively low R² 
values (explaining only 50 % of data variability), the other models 
adequately account for the data variability. For the habitat quality 
model, cubic fitting, as opposed to quadratic fitting, can markedly 
enhance the R² value from 0.8851 to 0.9192, indicating a better fit to the 
data. The carbon emission equivalent curve wasn’t plotted because of 
the complex nonlinear relationship between carbon emissions and the 
two direct benefits and the difficulty in finding a fitting function. The 
carbon emission status for specific scenarios can be determined by the 
colors of Pareto optimal solution points.

As shown in Fig. 9, when the real-world conditions are, for example, 
that the budget has to be capped at 5 million CNY (~11.775 million 

USD), the annual reforested area is required to exceed 2500 Mu (~166.7 
ha), and greater emphasis is placed on habitat quality and carbon 
emissions, the policy combination with a G2G compensation of 900 
CNY/Mu (~2119.5 USD/ha) and a subsidized electricity price of 0.35 
CNY/kWh (0.05495 USD/ kWh) turns out to be the one that aligns most 
closely with these requirements.

Fig. 9 also delineates the interplay between direct and indirect 
benefits. The total budget curve shows when the area of reverted 
farmland falls below 2000 Mu (~133.3 ha), its influence on the total 
policy budget is negligible. The gross economic benefits curve reveals an 
inflection point at approximately 2700 Mu (~180 ha) of reverted land. 
Surpassing this threshold necessitates an increase in both reverted land 
and electricity consumption to sustain equivalent economic benefits, 
which means further reallocating agricultural labor to other sectors is 
unlikely to yield substantial economic gains. The habitat quality curve 
shows minimal sensitivity to electricity consumption, with the minimum 
reverted farmland area required to maintain a given level of habitat 
quality occurring at around 7 million kWh of electricity consumption.

5. Conclusion and discussion

This research delves into achieving a balance between ecological 
conservation and economic growth within the constraints of a limited 
budget. By developing the Socio-Econ-Ecosystem Multipurpose Simu
lator (SEEMS), we model the implementation outcomes of Grain-to- 
Green (G2G) and Firewood-to-Electricity (F2E) programs at the 
Wolong National Reserve.

The individual policy cost-efficiency analysis uncovers the nonlinear 
relationship between policy outcomes and compensation levels, with 
optimal effects observed at approximately 500 CNY/Mu (~1177.5 USD/ 
ha) for G2G and a subsidized electricity rate of 0.4–0.5 CNY/kWh 
(~0.063–0.079 USD/kWh) for F2E. Nonetheless, beyond a certain 
threshold, the incremental benefits of increased compensation or sub
sidies diminish, underscoring the significance of identifying the most 
cost-effective policy design.

The dual-policy comprehensive cost-efficiency analysis reveals that 
total financial burden is not strongly correlated with carbon emissions 
but is positively associated with habitat quality. A noteworthy phe
nomenon emerges that gross economic benefits are lowest at mid-range 
financial expenditure levels. This phenomenon can be explained by 
integrating changes in economic structure with revenue fluctuations. At 
lower compensation thresholds, farmers may experience increased 
financial stress, prompting them to seek additional income streams, such 
as non-agricultural employment, to offset the income loss from aban
doning farming and enhance overall income. At higher compensation 
standards, households with labor-dominant profiles are more likely to 
engage in the project, receive periodic compensation, and transition to 
other sectors, which can augment their business revenue and boost 
overall earnings. However, at medium subsidy standards, farmers rely 
on compensations to sustain a basic livelihood, diminishing their drive 
to seek extra income sources. Additionally, the compensation is insuf
ficient for a complete transition to other sectors, limiting the potential 
growth of total income. This result highlights an intriguing principle of 
policy implementation: full non-enforcement or stringent enforcement is 
preferred. A seemingly moderate approach may lead to the most unde
sirable outcomes.

Of course, this is merely a reflection of a single target, and it does not 
justify the outright dismissal of policy options associated with moderate 
financial burden levels. Instead, a multi-objective assessment is required 
to gauge the appropriate and precise intensity of policy enforcement, 
which underscores the significance of Pareto analysis. Pareto analysis 
inherently results in a solution set with multiple non-dominated solu
tions, none of which are optimal across all objectives. Consequently, 
real-world constraints and decision-maker preferences serve as the tie- 
breaking points among these solutions. By considering both direct and 
indirect benefits comprehensively, we introduce the target constraint 

Table 5 
Optimal policy combinations and their performances on target indicators. The 
table categorizes the performance of 18 optimal policy combinations on gross 
financial benefits, carbon footprint, and habitat quality using a four-level clas
sification system (“–, -, +, ++”).

F2E 
(CNY/ 
kWh)

G2G 
(CNY/ 
Mu)

Gross financial 
benefits

Carbon 
footprint

Habitat 
quality

1 0.35 900 – ++ +

2 0.25 600 – ++ –
3 0.20 1800 – ++ ++

4 0.55 400 – ++ –
5 0.55 1700 – + ++

6 0.25 1700 – ++ ++

7 0.60 1800 – ++ +

8 0.65 2000 + ++ –
9 0.55 1800 + ++ +

10 0.65 1900 + + ++

11 0.55 100 + + –
12 0.40 1900 + + ++

13 0.55 200 + + –
14 0.35 2000 + – ++

15 0.20 0 ++ + –
16 0.35 0 ++ + –
17 0.35 100 ++ – –
18 0.65 0 ++ – –

* 1 CNY (Yuan) ≈ 0.157 Dollars.
* 1Mu ≈ 0.067 Hectares.

Table 6 
Model function expressions and fitting performance metrics. The table summa
rizes the functional relationships and R² values for the G2G budget model, F2E 
budget model, habitat quality model, and gross economic benefits model.

Model Train 
R²

Test R²

G2G budget 
model

Y = a× ebX1 + c a = 1.8845, b = 0.0047, 
c = 226,620.6

0.9485 0.8962

F2E budget 
model

Y = aX2
2 + bX1 +

c
a =1.9104×10− 8, b =

0.5094, 
c = -824,291.4

0.9965 0.9979

Habitat 
quality 
model

Y = β0 + β1X1 +

β2X2 + β3X2
1 +

β4X1X2 + β5X2
2 +

+ β6X3
1 +

β7X2
1X2 +

β8X1X2
2 + β9X3

2

β0 = -0.9578, β1 =

1.5254, 
β2 = 0.0776, β3 =

1.5801, β4 = -0.0047, 
β5 = 0.0403, β6 =

0.4903, β7 = -0.0082, 
β8 = 0.0200, β9 =

-0.0423

0.9192 0.8914

Economic 
benefits 
model

Y = β0 + β1X1 +

β2X2 + β3X2
1 +

β4X1X2 + β5X2
2

β0 = -0.2455, β1 =

-0.1137, β2 = -0.3466, 
β3 =0.3029, β4 =

0.0281, β5 = -0.086

0.5010 0.5000

* X1: Total reverted farmland area.
* X2: Total electricity consumption.
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Fig. 8. Pareto-optimal policy combinations in the of gross economic benefits, carbon footprint, and habitat quality in 2024. All subfigures display the same set of 
Pareto-optimal solutions, each highlighting the trade-offs between two indicators while holding the third constant.

Fig. 9. Posterior Pareto optimization in 2024. This figure conducts posterior Pareto optimization based on budget constraints, policy objectives, and effect pref
erences. 5 million CNY allocation prioritizing habitat and carbon goals yields maximum efficiency at G2G 900 CNY/Mu & F2E 0.35 CNY/kWh.
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line, budget control line, and indifference curve. Through Posterior 
Pareto optimization, we can further select a policy combination that 
aligns more closely with actual situation constraints and objectives.

This study offers a comprehensive analysis of ecological conservation 
policies in the Wolong National Reserve, highlighting two main aspects 
of significance. First, as a critical node within the human-biosphere 
network, Wolong plays a vital role in global ecosystem conservation 
efforts. Second, the challenges faced by Wolong—balancing economic 
development with ecological protection in a sensitive environment—are 
common issues encountered throughout the developing world. These 
challenges often involve managing complex natural ecosystems amid 
growing economic demands and population pressures, while navigating 
the unintended consequences of narrowly focused public policies. 
Effective conservation requires careful trade-offs between competing 
programs, all within the constraints of limited budgets. In this light, 
Wolong serves as a model case for understanding the political-ecological 
dilemmas that arise in similar contexts. Addressing these challenges in 
Wolong could provide valuable insights for other regions worldwide 
facing comparable ecological and developmental tensions.
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